
WARSAW UNIVERSITY OF TECHNOLOGY
DISCIPLINE OF MATHEMATICS
FIELD OF NATURAL SCIENCES

Ph.D. Thesis

Karolina Okrasa, M.Sc.

Graph Homomorphisms: From Structure to Algorithms

Supervisor/Supervisors
prof. Zbigniew Lonc

Additional supervisor
 Paweł Rzążewski, Ph. D.

WARSAW 2023

Acknowledgements

I sincerely thank Paweł, the greatest advisor one can have, for all his time, effort and

enthusiasm; I would not even think about starting this journey without being sure he is

always there to tame not only all my wildest ideas, but also that dramatic side of me that

nobody else is aware of.

I would also like to express my deep gratitude to Marcin and Michał, who taught me

a lot, and certainly shaped me (each one in his own way) into the researcher I am today.

To Zbigniew, my supervisor, for his trust, patience, and calmness.

To Łukasz and Jana for being the nicest company one could have during this extraor-

dinary adventure, and to all my other colleagues from MiNI and MIMUW for making it

inspiring and entertaining.

Finally, to my parents and my sister, for their support and understanding, and to

Filip, whose love and care for me and the St,t,t-free graphs kept me motivated to complete

this journey.

Abstract

A homomorphism from a graph G to a graph H is an edge-preserving mapping from the

vertex set of G to the vertex set of H. Graph homomorphisms are a wide and natural

generalization of graph colorings; each proper k-coloring of a graph G is a homomorphism

from G to the complete graph Kk and vice versa. For a fixed graph H, the graph ho-

momorphism problem Hom(H) takes a graph G as an instance and asks whether there

exists a homomorphism from G to H.

The leading objective of this dissertation is to study how the complexity bounds of the

graph homomorphism problem (and its list generalization) depend on the structural prop-

erties of the instances. In general, the existence of algorithms solving NP-complete cases

of Hom(H) significantly faster than brute force is unlikely under standard complexity

assumptions. However, it is still possible to find algorithms working in time polynomial,

or at least subexponential, in the size of the input, if we put additional assumptions on the

class of instances. Many such phenomena were observed in the case of graph colorings. In

this work we examine to which extent they can be generalized to graph homomoprhisms.

We are interested in two kinds of restrictions. First, we investigate the classes of in-

stances that can be obtained by bounding a structural parameter of a graph, i.e., treewidth

or clique-width. The homomorphism problems can be solved in polynomial time in classes

of bounded treewidth/clique-width, and here we aim to understand the optimal depen-

dence on the parameter. Second, we consider classes of graphs that can be obtained by

excluding a fixed graph as an induced subgraph, and show for which such classes the

algorithms solving Hom(H) (and its list variant) significantly faster than the standard

brute-force approach exists. We complement these results with lower bounds, based on

standard complexity theory hypotheses.

We emphasize that while our primary interest comes from the perspective of compu-

tational complexity, the presented algorithmic results are usually a consequence of com-

binatorial properties of graphs and homomorphisms, that require a deep understanding

of their structure.

Keywords: graph homomorphisms, list homomorphisms, hereditary graph classes,

clique-width, treewidth, Exponential Time Hypothesis, Strong Exponential Time Hy-

pothesis

5

Streszczenie

Homomorfizmem z grafu G w graf H nazywamy funkcję ze zbioru wierzchołków G w

zbiór wierzchołków H zachowującą krawędzie. Homomorfizmy w naturalny sposób uogól-

niają kolorowania grafów; poprawne k-kolorowanie grafu G możemy interpretować jako

homomorfizm z G w graf pełny Kk i na odwrót. Dla ustalonego grafu H problem homo-

morfizmu grafów Hom(H) przyjmuje jako instancję graf G i odpowiada na pytanie, czy

istnieje homomorfizm z G w H.

W niniejszej rozprawie badamy, jak złożoność problemu homomorfizmu grafów (i jego

listowej wersji) zależy od struktury instancji. W ogólności, przy standardowych założeni-

ach teorii złożoności, nie istnieją algorytmy rozwiązujące NP-zupełne przypadki problemu

Hom(H) istotnie szybciej niż metodą brute-force. Nie wyklucza to jednak możliwości

rozwiązania problemu w czasie wielomianowym lub podwykładniczym względem rozmi-

aru instancji, jeśli nałożymy pewne ograniczenia na klasę tych instancji. Istnienie tego

typu algorytmów dla problemu kolorowania zostało przebadane z użyciem wielu metod;

w poniższej pracy analizujemy, które z nich można uogólnić na problem homomorfizmu.

Interesują nas dwa rodzaje ograniczeń. W pierwszej kolejności przyjrzymy się klasom

instancji, które można otrzymać poprzez ograniczenie pewnego strukturalnego parametru

grafu – w naszej pracy będzie to szerokość drzewowa oraz szerokość klikowa. Wiadomo,

że jeśli ograniczymy szerokość drzewową lub klikową instancji, wówczas problem homo-

morfizmu można rozwiązać w czasie wielomianowym. W niniejszej pracy analizujemy

zaś dokładnie, jak wygląda zależność funkcji złożoności od parametru. W drugiej części

pracy rozważamy klasy instancji, które można zdefiniować poprzez zabranianie ustalonego

grafu jako podgrafu indukowanego. Pokazujemy, dla jakich klas, które można otrzymać

w ten sposób, istnieją algorytmy rozwiązujące Hom(H) (oraz wariant listowy) istotnie

szybciej niż metoda brute-force. Uzupełniamy te wyniki, pokazując dolne ograniczenia

przy założeniu standardowych hipotez z teorii złożoności.

Chociaż główna motywacja niniejszej rozprawy wywodzi się z teorii złożoności, warto

podkreślić, że przedstawione twierdzenia są wynikiem analizy kombinatorycznych włas-

ności grafów oraz ich homomorfizmów, oraz głębokiego zrozumienia ich struktury.

Słowa kluczowe: homomorfizmy grafów, listowe homomorfizmy, dziedziczne klasy

grafów, szerokość klikowa, szerokość drzewowa, Hipoteza o czasie wykładniczym, Silna

hipoteza o czasie wykładniczym

6

Contents

1 Introduction1 Introduction 9

1.1 A generalization of graph colorings1.1 A generalization of graph colorings . 9

1.2 Computing homomorphisms: state of the art1.2 Computing homomorphisms: state of the art 12

1.2.1 Homomorphisms meet treewidth1.2.1 Homomorphisms meet treewidth . 14

1.2.2 Excluding induced subgraphs1.2.2 Excluding induced subgraphs . 15

1.3 Overview of the results1.3 Overview of the results . 18

1.4 Organization of the thesis1.4 Organization of the thesis . 23

2 Preliminaries2 Preliminaries 24

2.1 Graph notations2.1 Graph notations . 24

2.2 Graph parameters2.2 Graph parameters . 26

3 Graph homomorphisms: toolbox3 Graph homomorphisms: toolbox 28

3.1 Basic concepts3.1 Basic concepts . 28

3.2 Projectivity3.2 Projectivity . 30

3.2.1 Constructible sets3.2.1 Constructible sets . 34

3.3 Signature sets3.3 Signature sets . 39

4 The homomorphism problem parameterized by clique-width4 The homomorphism problem parameterized by clique-width 44

4.1 The algorithm4.1 The algorithm . 44

4.1.1 Consequences of Theorem 4.1.1Theorem 4.1.14.1.1 Consequences of Theorem 4.1.1Theorem 4.1.1 . 50

4.2 Lower bounds4.2 Lower bounds . 52

5 List homomorphisms: toolbox5 List homomorphisms: toolbox 62

5.1 Bi-arc graphs and their characterizations5.1 Bi-arc graphs and their characterizations 63

5.2 Decompositions5.2 Decompositions . 70

7

5.3 Incomparable sets5.3 Incomparable sets . 81

6 The list homomorphism problem parameterized by treewidth6 The list homomorphism problem parameterized by treewidth 86

6.1 Decomposition lemmas6.1 Decomposition lemmas . 86

6.2 The algorithm6.2 The algorithm . 106

6.3 Building list gadgets6.3 Building list gadgets . 108

6.4 Lower bounds6.4 Lower bounds . 138

7 Complexity of the homomorphism problems in F -free classes7 Complexity of the homomorphism problems in F -free classes 141

7.1 Pt-free graphs7.1 Pt-free graphs . 144

7.1.1 The algorithm7.1.1 The algorithm . 147

7.1.2 Lower bounds7.1.2 Lower bounds . 152

7.2 St,t,t-free graphs7.2 St,t,t-free graphs . 156

7.2.1 Consistent instances7.2.1 Consistent instances . 159

7.2.2 Known tools and notions7.2.2 Known tools and notions . 161

7.2.3 Safe graphs and neutral functions7.2.3 Safe graphs and neutral functions 168

7.2.4 The algorithm7.2.4 The algorithm . 176

7.2.5 Lower bounds and generalizations7.2.5 Lower bounds and generalizations 188

7.3 Possible extensions of the results7.3 Possible extensions of the results . 191

8 Related results8 Related results 197

Appendix: Variants of satisfiability problemsAppendix: Variants of satisfiability problems 199

8

Chapter 1

Introduction

Out of the many notions in mathematics that attempt to formalize the intuitive meaning

of similarity between two objects of the same type, one of the most fundamental and

general is the concept of a homomorphism [33, 55, 2222, 3333, 6666, 7272]. Homomorphisms allow

us to capture how the structure of one object is preserved in the other, though, unlike

isomorphisms, they do not require the objects to be essentially “the same”. The notion of

a homomorphism can be considered on all algebraic structures—groups, rings, lattices or

vector spaces (where they are rather known as linear mappings)—as well as other objects,

like relational structures.

This dissertation focuses on the study of graph homomorphisms, that can be seen as

particular cases of homomorphisms of relational structures, namely, the structures that

are finite and equipped with one binary symmetric relation. Formally, for two graphs

G = (V (G), E(G)) and H = (V (H), E(H)), a homomorphism from G to H is a function

f : V (G) → V (H) such that for every edge uv of G it holds that f(u)f(v) is an edge of

H (see Figure 1.1Figure 1.1 for an example). If f is a homomorphism from G to H, we denote this

fact by f : G → H. We call H the target graph. For a fixed target H, the homomorphism

problem, denoted by Hom(H), asks whether there exists a homomorphism from a given

graph G to H.

1.1 A generalization of graph colorings

Many classic graph problems can be described as variants of the graph homomorphism

problem [1111, 4141, 4545, 5858, 6666]. One of the most prominent special cases of this phenomenon

9

Figure 1.1: An example of a homomorphism from a graph G (left) to a graph H (right)
that is a cycle on 5 vertices. Here, vertices of H are depicted using different colors, and
the colors of vertices of G illustrate the mapping.

is graph coloring: for a positive integer k, a k-coloring of a graph G is a mapping c :

V (G) → {1, . . . , k} such that for every edge uv of G it holds that c(u) ̸= c(v). The

computational problem of deciding whether G can be colored with k colors is denoted by k-

Coloring, and is polynomial-time solvable when k ⩽ 2 and NP-complete otherwise [8080].

As mentioned, k-Coloring can be seen as a special case of the Hom(H) problem: namely,

each k-coloring of a graph G is a homomorphism from G to the complete graph Kk and

vice versa.

The symmetric and elegant structure of the objects of interest, the ease of stating

questions and conjectures, sometimes surprising results—there are various reasons of the

popularity of the graph coloring problem that make it, undoubtfully, one of the best

studied graph problems, from the perspective of structural graph theory [11, 1919, 5959, 6060, 7878,

111111] (that includes the famous Four Color Theorem or Strong Perfect Graph Theorem) or,

what is important from our point of view, computational complexity. As a consequence

of this interest, the complexity of the k-Coloring problem is deeply understood besides

the classic P vs NP-complete dichotomy. The standard brute force approach has the

complexity kn · nO(1) (here n always stands for the number of vertices of the instance

graph), but with more involved techniques it is possible to solve the problem in time

2n · nO(1) [66]. Moreover, there are numerous algorithms solving the problem effectively on

restricted classes of the input instances [3030,5353,5757,9494].

The major motivation for the results presented in this dissertation originate from the

fact that it seems natural to follow the lines of research for the k-Coloring problem to

study the more general Hom(H) problem, and examine to which extent the variety of tools

developed to work on coloring problems can be applied. While our primary interest comes

from the perspective of the computational problem Hom(H), the algorithmic theorems are

10

usually a consequence of various combinatorial properties of graphs and homomorphisms

between them, and require a deep understanding of their structure. Usually, the crucial

obstacle for a straightforward generalization of the aforementioned tools developed for

k-Coloring is that the structure of homomorphisms lacks certain symmetries of graph

colorings. Intuitively speaking, we need to capture the arbitrary structure of a target

graph H, while in the case of colorings the target is always a clique. This is the reason

why some of the combinatorial techniques become impractical in the more general setting

of homomorphisms, especially when designing lower bounds for the running times of

algorithms. This also explains why a plenty of tools used for this kind of proofs comes

from algebraic graph theory [1313,6868,7676]. Indeed, some useful properties of homomorphisms,

difficult to express by purely combinatorial statements, may be captured using the more

universal language of algebra and then exploited in the algorithmic context.

The algebraic approach has proven to be successful in the study on another well-known

problem, related to graph homomorphisms, namely, the Constraint Satisfaction Problem

(CSP) [1414, 4242, 7676, 7777]. The CSP problem asks about the existence of a homomorphism

between two given relational structures, and is general enough to include many well-known

combinatorial problems, such as propositional satisfiability, scheduling problems, systems

of linear equations or, of course, graph homomorphisms [44, 9191, 108108]. From our point of

view, it seems also interesting to understand how the methods used to work on graph

problems relate to the more generic tools developed for other relational structures.

While the question about the existence of a homomorphism between two graphs seems

very natural, it is not the only graph homomorphism-related problem one can consider.

For a fixed graph H, a generalization of the Hom(H) problem, and another special case of

CSP (known as a conservative CSP [1212]) that also attracts our attention, is the so-called

list homomorphism problem LHom(H). An instance of LHom(H) consists of a graph

G and a list function L : V (G) → 2V (H). We ask whether there exists a homomorphism

h : G → H such that for every vertex v of G it holds that h(v) ∈ L(v).

Clearly, list homomorphisms also capture list colorings: the List-k-Coloring is a

generalization of the k-Coloring, where every vertex of an instance G is additionally

equipped with a subset of {1, . . . , k}, interpreted as the list of available colors, and we

are only interested in existence of solutions that assign to every vertex a color from

its list. While the concept of list colorings itself draws considerable attention amongst

11

researchers (it was already studied by Vizing [113113], and Erdős, Rubin and Taylor [3434]

in 1970s), we point out that having lists appears to be extremely useful from the point

of view of designing algorithms. Indeed, lists allow us to express that in a potential

solution some vertex is not mapped to a certain value which, in turn, nicely combines

with branching techniques. Therefore, numerous algorithms for graph coloring can be

obtained as corollaries of algorithms solving the more general list version of the problem

(some examples are included below).

1.2 Computing homomorphisms: state of the art

The P vs. NP-complete dichotomy for Hom(H) was proven in 1990 by Hell and Nešetřil [6767].

They have shown that the problem is polynomial-time solvable if H contains a vertex

with a loop or is bipartite, and is NP-complete for all other graphs H. The complexity

dichotomy for the LHom(H) problem was proven in three steps [3737–3939]. First, Feder

and Hell [3737] considered the special case of reflexive target graphs, i.e., graphs such that

each vertex has a loop. Then, together with Huang [3838] they have shown the complexity

dichotomy for irreflexive graphs (i.e., with no loops). Finally, in the paper [3939], also by

Feder, Hell and Huang, the results obtained in [3737, 3838] were generalized: the authors de-

fined the class of bi-arc-graphs, and showed that if H is a bi-arc graph, then LHom(H)

can be solved in polynomial time, and otherwise the problem is NP-complete.

In this thesis, our objective is to understand the complexity of the Hom(H) and

LHom(H) problems on a more fine-grained level than just the P vs. NP-complete clas-

sification. Observe that while the dichotomy theorem of Hell and Nešetřil provides a

basic characterization of the complexity of Hom(H), still, it does not say much on how

quickly one can actually solve these problems. A straightforward brute-force algorithm

that enumerates all the possibilities allows us to compute whether a solution exists in

time |V (H)|n · nO(1). An immediate natural question is whether this running time can be

significantly improved—and there exist cases for which it can be answered affirmatively.

For example, if our target graphs H are cliques, i.e., we are back in the coloring problem,

the already mentioned work of Björklund et al. [66] implies that for every k the Hom(Kk)

problem can be solved in time 2n · nO(1); in particular, the exponential factor does not

depend on k. There are also several algorithms for the Hom(H) problem for general

12

target graphs H that achieve running times of the form λ(H)n ·nO(1), where λ(H) is some

structural parameter of H [4343,107107,114114].

What we need to have in mind here is that the usual P ̸= NP assumption is not

strong enough to obtain tight bounds for the running times of algorithms, in particular,

to exclude the existence of an algorithm that solves Hom(H) in time λ(H)o(n) for some

parameter λ(H)). There are two stronger hypotheses that are commonly used in this

type of lower bounds, namely the Exponential Time Hypothesis (ETH) and the Strong

Exponential Time Hypothesis (SETH). The most commonly used version of the first

one is actually a corollary that follows from the original conjecture and the so-called

Sparsification Lemma [2626,7373,7474].11

Exponential Time Hypothesis [7373]. There is no algorithm that solves 3-Sat with n

variables and m clauses in subexponential time, i.e., in time 2o(n+m).

Strong Exponential Time Hypothesis [7474]. For every ε > 0 there is k such that

the Satk problem with n variables cannot be solved in time 2(1−ε)n · nO(1).

Now, by the result of Cygan et al. [2525] we know that the running time given by the

brute-force approach for Hom(H) is essentially tight assuming the Exponential Time

Hypothesis, as long as one considers only the dependence on the number of vertices of

the instance and target graphs. In particular, either there is no universal constant c such

that Hom(H) can be solved in time cn · nO(1) or the ETH fails. Still, it is often possible

to circumvent the general lower bound and obtain significantly better time complexity if

we restrict the instances of our problem in some way.

In this work we focus on the complexity of the homomorphism problems precisely

from a perspective of restricting the class of the input instances. We focus on these target

graphs H, for which the corresponding homomorphism problems are NP-complete. We

aim to understand how the structural properties of the instances from a given class may

impact the running times of the algorithms that solve Hom(H) and LHom(H). Clearly,

it may happen that even for a restricted class of instances certain algorithms work only

for some specific target graphs H. As already mentioned, we give a particular attention to

many phenomena that were observed in the k-Coloring problem, and examine to which
1For completeness we include the formal definitions of the 3-Sat and CNF-Sat problems, as well as

the other variants of Sat considered in the thesis, in the appendix.

13

extent they generalize to the Hom(H) and LHom(H) problems. The thesis collects plenty

of tools that help to answer this kind of questions from various perspectives. Some of them

come from the literature, others were developed specifically to attack particular problems

discussed in the thesis—and usually turned out to be useful also in a more general setting.

Below we describe two ways of restricting the input instances that we consider.

1.2.1 Homomorphisms meet treewidth

One of the most natural ways to study the boundary between tractable and hard instances

of graph problems is measuring the size of an instance graph not only by its number of

vertices, but also by some other structural parameter of the instance. The parameters that

are particularly interesting in the context of algorithmic applications are these defined by

certain structural decompositions of a graph. Intuitively, having a “good” decomposition

of a graph allows us to solve the problem using dynamic programming routines [77, 99, 2424,

2626,3535,4848,7575,106106]

Probably the best known and well-studied structural parameter of a graph is the

treewidth (which we formally define in Chapter 2Chapter 2), discovered independently by several au-

thors with different motivations [22,6161,105105]. Informally speaking, treewidth measures how

similar the graph is to a tree. For many classic NP-complete problems, polynomial-time

algorithms for graphs with bounded treewidth can be obtained by adapting the dynamic

programming algorithms that solve problems for trees to work on tree decompositions of

input instances. The common reason for that is captured by the powerful meta-theorem

of Courcelle [2323] which asserts that each problem expressible in Monadic Second Order

Logic (MSO2) can be solved in time f(t) · n on n-vertex graphs with treewidth t where f

is some function, depending on the MSO2 formula that describes the particular problem.

One may, however, ask about the optimal dependence on the treewidth for the par-

ticular problems, i.e., how can the function f look like. For the starting point of our

investigations, namely the k-Coloring problem, a standard dynamic programming rou-

tine on a tree decomposition of the instance graph gives us the complexity kt · nO(1), if a

tree decomposition of G of width t is given. This was proven to be essentially optimal by

Lokshtanov, Marx, and Saurabh.

Theorem 1.2.1 (Lokshtanov, Marx, Saurabh [8787]). For any k ⩾ 3, there is no al-

gorithm that solves k-Coloring on n-vertex instances of treewidth t in time (k−ε)t·nO(1),

14

unless the SETH fails.

The standard dynamic programming for the Hom(H) problem, if a tree decomposition

of G of width t is given, has time complexity |V (H)|t · nO(1), and the question whether

this bound is tight was already studied by the author of this thesis and Rzążewski [100100].

It turned out that for a large family of target graphs H the complexity |V (H)|t · nO(1) is

essentially optimal, however, in some cases, faster algorithms can be found. The authors

derived tight bounds, conditioned on SETH and two conjectures from algebraic graph

theory from early 2000s. As these conjectures remain wide open, we know no graph, for

which the aforementioned bounds do not apply.

1.2.2 Excluding induced subgraphs

Naturally, there are other ways to restrict the input instances than bounding some struc-

tural parameter of an instance graph. Observe that the classes of graphs of bounded

treewidth are hereditary, i.e., closed under deleting vertices. Being hereditary turns out

to be a very useful property in algorithmic design, since it works well with many standard

techniques, like branching or divide & conquer. Therefore, if for some computational prob-

lem we want to restrict our input instances to some class G, choosing G to be hereditary

appears to be reasonable.

There is another perspective to look at hereditary graph classes: by excluding induced

subgraphs. For graphs F and G, we say that G is F -free if G does not contain F as

induced subgraph. For a family F of graphs, we say a graph G is F-free if G is F -free for

every F ∈ F . Now, we observe that a class G of graphs is hereditary if and only if there

exists a (not necessarily finite) family F of graphs such that every G ∈ G is F -free.

The study of graph coloring in hereditary graph classes turns out to be a very promi-

nent topic amongst researchers [5050,5353,5555,5757,6969]. Since a general classification of all such

classes with regards to the complexity of graph coloring (or other classic graph problems)

may be too complex, here we focus on classifying these graph classes that exclude one

connected graph F .

Emden-Weinert et al. [3232] proved that for every k ⩾ 3, the k-Coloring problem is

NP-complete even for graphs of girth at least g, for any fixed g. This implies that if

F contains a cycle, then k-Coloring remains NP-complete in F -free graphs, as every

graph of girth at least |V (F)| + 1 is also F -free. Moreover, k-Coloring is NP-complete

15

k\t ⩽ 5 6 7 ⩾ 8
3 P [8989] P [104104] P [1010] Quasi-P [103103]
4 P [6969] P [2121] NP-complete [7171] NP-complete [7171]

⩾ 5 P [6969] NP-complete [7171] NP-complete [7171] NP-complete [7171]

Table 1.1: The current state of art of the complexity of k-Coloring of Pt-free graphs.

in line graphs [7070, 8686]. Line graphs are in particular K1,3-free, so they form a subclass

of F -free graphs when F is tree containing a vertex of degree at least 3. (We note that

these NP-completeness results are also ruling out the existence of subexponential-time

algorithms under ETH.) Thus, the only remaining cases are these in which F is a path.

We denote by Pt a path on on t vertices. Here, complete dichotomies are known in almost

all cases (see table 1.1table 1.1): in particular, for every k ⩾ 4 there exists t such that:

• the k-Coloring problem can be solved in polynomial time in Pt-free graphs,

• for each t′ > t the k-Coloring problem is NP-complete in Pt′-free graphs and

cannot be solved in subexponential time, unless the ETH fails.

Since for k ⩽ 2 the problem is polynomial-time solvable in general, the only remaining

case is 3-Coloring. Here polynomial-time algorithms are known for t ⩽ 8, but we do

not know whether the problem is NP-complete for any t ∈ N. Actually, the belief that

the problem is polynomial-time solvable for any constant t is supported by the existence

of quasi-polynomial-time algorithms that work for every t by Pilipczuk et al. [103103]. Note

that if a problem for which a quasi-polyomial-time algorithm is known turns out to be NP-

complete, this yields quasi-polyomial-time algorithms for all problems in NP. In particular,

such result would disprove the ETH and the SETH.

It is also worth mentioning that an analogous classification is also established for

the list version of the coloring problem. In most of the cases the complexities of the two

problems coincide, with only one exception: 4-Coloring of P6-free graphs is polynomial-

time solvable [2121], while the List-4-Coloring problem in this class is NP-complete and

admits no subexponential-time algorithm, assuming the ETH [5454].

The study on the complexity of the Hom(H) and LHom(H) problems in hereditary

graphs classes for non-complete targets received slightly less attention. Feder, Hell and

Huang [4040] considered the question on whether the LHom(H) problem becomes easier if

we additionally assume that the maximum degree of a vertex the instance is bounded.

They have shown that for every non-bi-arc graph H the LHom(H) problem remains

16

NP-complete in graphs of maximum degree at most 3. One has to have in mind that

since LHom(H) is a generalization of Hom(H), the hardness results for LHom(H) do

not imply hardness for Hom(H). We note that the result of Feder et al. [4040] cannot

be generalized to Hom(H), as for example k-Coloring is polynomial-time solvable in

graphs of maximum degree k. The study on the non-list variant of the question was

initialized by Gallucio et al. [4646] who showed that if H is an odd cycle of at least 5

vertices, then the problem is NP-complete even in subcubic graphs. Later, Siggers [109109]

has proved that for every non-bipartite loopless graph H there exists a constant b(H)

such that the Hom(H) problem remains NP-complete in graph of maximum degree at

most b(H). Observe that these results imply, in particular, that Hom(H) (LHom(H),

respectively) remains NP-complete in F -free graph for every F that contains a vertex of

degree at least b(H) + 1 (4, respectively).

The study on the complexity of the LHom(H) problem for target graphs that are

cycles was continued by Chudnovsky et al. [1616]. They have showed that the LHom(Ck)

problem can be solved in polynomial time in P9-free graphs for k ∈ {5, 7} ∪ [9, ∞), and

that if F is not a subgraph of a subdivided K1,3, then (even a certain restiction of)

the LHom(Ck) problem for k ⩾ 5 remains NP-complete in F -free graphs. The latter

was then generalized by Piecyk and Rzążewski [101101, 102102] who showed that if F has a

connected component which is not a subgraph of a subdivided K1,3 and H is non-bi-arc,

then the LHom(H) problem remains NP-complete and cannot be solved in subexponential

time, unless the ETH fails. Earlier, Groenland et al. [5656] showed that for every t, the

LHom(H) problem (and thus also the Hom(H) problem) can be solved in subexponential

time 2O(
√

n log n) in Pt-free graphs if H does not contain two vertices with two common

neighbors.

If we consider the pairs (F, H) for which the existence of subexponential-time algo-

rithms for LHom(H) in F -free graphs is ruled out under the ETH, still not much is

known about the non-list version of the problem. Clearly, there exist pairs (F, H) such

that Hom(H) in F -free graphs can be solved in polynomial time, while under the ETH,

there is no subexponential-time algorithm for LHom(H) in the same class: this is pre-

cisely what happens in the case of 4-Coloring P6-free graphs. Another example of such

a phenomenon follows from the work of Feder and Hell [3636], who studied the Hom(H)

problem in line graphs. They proved that Hom(W5) is polynomial-time solvable in line

17

graphs (here the graph W5 is the 5-wheel, i.e., the graph obtained from the cycle C5 by

adding a universal vertex), while from the discussion on List-3-Coloring it follows that

LHom(W5) in lines graph is NP-omplete and cannot be solved in subexponential time in

line graphs, unless the ETH fails.

1.3 Overview of the results

The contents of the thesis include (but are not limited to) the material from the following

works.

[4747] R. Ganian, T. Hamm, V. Korchemna, K. Okrasa, K. Simonov. The Fine-Grained

Complexity of Graph Homomorphism Parameterized by Clique-Width, 49th In-

ternational Colloquium on Automata, Languages, and Programming, ICALP 2022,

volume 229 of LIPIcs, pages 66:1−66:20.

[9797] K. Okrasa, M. Piecyk, P. Rzążewski. Full Complexity Classification of the List

Homomorphism Problem for Bounded-Treewidth Graphs. 28th Annual European

Symposium on Algorithms, ESA 2020, volume 173 of LIPIcs, pages 74:1−74:24.

[9999] K. Okrasa, P. Rzążewski. Complexity of the List Homomorphism Problem in Hered-

itary Graph Classes. 88th Intentional Symposium on Theoretical Aspects of Com-

puter Science, STACS 2021, volume 187 of LIPIcs, pages 54:1−54:17.

Some of the results and examples from the previous thesis of the author is also included.

[100100] K. Okrasa, P. Rzążewski. Fine-Grained Complexity of the Graph Homomorphism

Problem for Bounded-Treewidth Graphs, SIAM J. Comput., 50(2):487−508, 2021.

Below we summarize the three problems that are our major focus and the main contribu-

tions of the dissertation.

As outlined in the previous section, first, we are going to focus on the complexity of the

graph homomorphism problems with respect to certain graph width parameters. Recall

the already mentioned work of the author of this thesis and Rzążewski [100100] that contains

nearly-complete SETH-based lower bound result for the Hom(H) problem parameterized

by treewidth. This result covers, in particular, all target graphs that are projective cores.

While to solve the problem in full generality we may restrict our considerations only to

18

cores (see Chapter 3Chapter 3 for the discussion on this matter), it is not clear whether the same

can be said about projective graphs. However, it can be shown that asymptotically almost

all graphs are projective cores [6565, 8888], thus even though the statement of Theorem 1.3.1Theorem 1.3.1

below might seem quite specific, it actually covers a large class of targets. We call non-

trivial these target graphs H for which Hom(H) is NP-complete.

Theorem 1.3.1 (Okrasa, Rzążewski [100100]). Let H be a fixed non-trivial projective

core, and let tw(G) be the treewidth of an n-vertex instance graph G.

(a) Assuming a tree decomposition of G of optimal width and size polynomial in n is

given, the Hom(H) problem can be solved in time |V (H)|tw(G) · nO(1).

(b) There is no algorithm solving the Hom(H) problem in time (|V (H)| − ε)tw(G) · nO(1),

for any ε > 0, unless the SETH fails.

It is also worth noting that the authors showed that this result can be lifted to all targets

graphs H under long-standing conjectures on the properties of projective cores. For all

the formal definitions and a detailed discussion on projective graphs and conjectures we

refer the reader to Chapter 3Chapter 3.

We follow this direction in two ways. First, we investigate the complexity bounds for

Hom(H) for another well-known parameter called clique-width. Second, we study the

complexity parameterized by treewidth, but of the more general LHom(H) problem.

Hom(H) parameterized by clique-width. Recall that the Hom(H) problem can be

solved in polynomial time in graphs of bounded treewidth. It turns out that this statement

can be strengthened, by replacing treewidth by a more general22 parameter. For example,

standard dynamic programming techniques can be used to obtain a (2|V (H)|)cw · nO(1)

time algorithm for the problem, where cw stands for clique-width [2424]: a well-studied

graph parameter that is bounded not only on all graph classes of bounded treewidth, but

also on well-structured dense classes such as complete graphs (the formal definition of

clique-width is also postponed to Chapter 2Chapter 2).

The k-Coloring problem parameterized by clique-width was studied by Lampis [8282]

who showed that for k ⩾ 3, the k-Coloring problem can be solved in time (2|V (H)| −
2Parameter λA is more general than parameter λB if there are graph classes of bounded λA and

unbounded λB but the opposite is not true.

19

2)cw · nO(1) and this is tight under the SETH [8282]. Observe that from his work it follows

that the aforementioned straightforward (2|V (H)|)cw · nO(1) upper bound is not optimal

even if we consider target graphs H that are cliques.

In our work we generalize this approach to a wider class of target graphs, in particular,

to the already mentioned projective cores. We introduce a parameter s(H), called the

signature number of H, that, informally speaking, characterizes the number of non-trivial

neighborhood classes of vertex subsets in H. We describe a dynamic programming routine

on a cw-expression (which can be seen as an analogue of a tree decomposition, but for

clique-width) of an n-vertex instance graph that solves the Hom(H) problem in time

s(H)cw · nO(1). Then we show a matching lower bound for a wide class of target graphs.

Theorem 1.3.2. Let H be a fixed non-trivial projective core, and let cw(G) be the clique-

width of an n-vertex instance graph G.

(a) Assuming a cw-expression of G of optimal width and size polynomial in n is given,

the Hom(H) problem can be solved in time s(H)cw(G) · nO(1).

(b) There is no algorithm solving the Hom(H) problem in time (s(H) − ε)cw(G) · nO(1),

for any ε > 0, unless the SETH fails.

In particular, using Theorem 1.3.2Theorem 1.3.2 we obtain lower bounds for all non-bipartite graphs

H with no loops, conditioned on the same conjectures as the discussed work of the author

of this dissertation and Rzążewski for treewidth [100100].

LHom(H) parameterized by treewidth. Let us point out that if the input n-vertex

graph G is given with a tree decomposition of width tw(G), then the straightforward

dynamic programming that solves Hom(H) problem in time |V (H)|tw(G) · nO(1) can easily

be adapted for the list version of the problem. Moreover, since Hom(H) is a special case

of LHom(H), the lower bounds obtained in [100100] hold, in particular, for the LHom(H)

problem. This is in particular, the case for List-k-Coloring for k ⩾ 3, the list analogue

of the k-Coloring problem.

However, one needs to have in mind that there is a family of graphs H, in particular

bipartite or with loops, that are not captured by results from [100100]. We point out that

although algebraic methods, based on graph products, are powerful enough to be used

20

with almost any graph H that defines an NP-complete case of the Hom(H) problem, they

do not capture the unique behavior of bipartite target graphs.

The study of the LHom(H) problem parameterized by the treewidth of the input

graph was initiated by Egri, Marx, and Rzążewski [3131] who provided the tight complexity

bounds in the case when H is a reflexive graph (i.e., every vertex has a loop). They have

shown how we can exploit certain decompositions of target graphs to solve LHom(H)

problem, and introduced the parameter i∗(H) that, roughly speaking, captures the size of

the largest incomparable set of vertices of a target graph—a set whose each two elements’

neighborhoods are incomparable with respect to the inclusion relation.

In our work we generalize the notion of decomposition, and the definition of i∗(H) to

all relevant target graphs and show the following dichotomy.

Theorem 1.3.3. Let H be a non-bi-arc graph (with possible loops) and let tw(G) be the

treewidth of an n-vertex instance (G, L).

(a) Assuming a tree decomposition of G of optimal width and size polynomial in n is

given, even if H is given as an input, the LHom(H) problem can be solved in time

i∗(H)tw(G) · (n · |V (H)|)O(1).

(b) Even if H is fixed, there is no algorithm solving the LHom(H) problem in time

(i∗(H) − ε)tw(G) · nO(1) for any ε > 0, unless the SETH fails.

Hom(H) and LHom(H) in F -free graphs. As the last topic considered in the the-

sis we still study the homomorphism problems, but from a slightly different perspective.

Denote by St,t,t the graph obtained by subdividing each edge of K1,3 exactly t − 1 times.

Recall that it was shown by Rzążewski and Piecyk [101101, 102102] that if F is a connected

subgraph of St,t,t, then there is no algorithm solving the LHom(H) problem in subex-

ponential time, unless the ETH fails. Here, we investigate these remaining connected

forbidden graphs for which we can hope for the existence of subexponential-time algo-

rithms. We identify these graphs H for which the problem can be solved efficiently in

Pt-free graphs, and show that for the every of the remaining graphs H, there exist t such

that the existence of subexponential algorithms solving LHom(H) in Pt-free graphs would

violate the ETH.

The dichotomy for Pt-free instances is based on the notion of a predacious graph (see

Chapter 7Chapter 7 for the precise definition). Roughly speaking, a graph is predacious if it can

21

be decomposed (with respect to the decompositions that appeared as a tool to prove

Theorem 1.3.3Theorem 1.3.3) in a way that at least one part is non-bi-arc and contains two sets A, B of

incomparable vertices, such that |A|, |B| ⩾ 2, and A and B are complete to each other.

Theorem 1.3.4. Let H be a fixed graph.

a) If H is not predacious, then for every t ∈ N the LHom(H) problem can be solved in

time nO(log2 n) in n-vertex Pt-free graphs.

b) If H is predacious, then there exists t ∈ N such that LHom(H) is NP-complete and

cannot be solved in time 2o(n) in n-vertex Pt-free graphs, unless the ETH fails.

We note that Theorem 1.3.4Theorem 1.3.4 generalizes the mentioned results on (List-)k-Coloring.

Indeed, each complete graph Kk is undecomposable, and while K3 does not contain two

sets of incomparable vertices of size at least 2 that are complete to each other, if k ⩾ 4,

any disjoint two-element subsets of V (Kk) have this property.

Next, we investigate the complexity of LHom(H) in St,t,t-free classes of graphs, and

show a similar dichotomy as in Theorem 1.3.4Theorem 1.3.4, under an additional assumption that

H is undecomposable (again, with respect to the decompositions from the proof of

Theorem 1.3.3Theorem 1.3.3). In this case we define a class of safe graphs, and show the following.

Theorem 1.3.5. Let H be a fixed undecomposable graph.

a) If H is safe, then, for every t ∈ N, the LHom(H) problem can be solved in time

2O(
√

n log2 n) in n-vertex St,t,t-free graphs.

b) Otherwise, there exists t ∈ N such that LHom(H) is NP-complete and cannot be solved

in time 2o(n) in n-vertex St,t,t-free graphs, unless the ETH fails.

We observe that the graph St,t,t in the statement of Theorem 1.3.5Theorem 1.3.5 can be replaced

by any subdivision F of K1,3. This follows from the fact that each F -free graph is in

particular St,t,t-free for t = |V (F)|.

Then we show to which extent the above results can be used to determine the com-

plexity of the Hom(H) problem in graph classes defined by forbidding induced subgraphs.

All the results of Chapter 7Chapter 7 serve also as an illustration of how the tools developed in the

previous chapters to prove Theorem 1.3.2Theorem 1.3.2 and Theorem 1.3.3Theorem 1.3.3 can be applied to obtain

other homomorphism-related theorems.

22

Last, let us stress out that while the three papers included in the dissertation, together

with [100100], seem to be the most important contribution of the author in the topic of graph

homomorphism, several other works related to the area could be considered here. We

briefly survey these in the last chapter of the thesis.

1.4 Organization of the thesis

Chapter 2Chapter 2 contains basic graph-theoretic notation and short introduction to graph pa-

rameters that are investigated in this thesis. Chapter 3Chapter 3 contains the necessary definitions

for algebraic tools, including (direct) graph products, projective graphs and constructible

sets. We show plenty of connections between these concepts, and describe how graph

products can be used to construct gadgets that can be, in turn, used in various kinds of

reductions. Then, in Chapter 4Chapter 4 we discuss the complexity of Hom(H) when parameter-

ized by clique-width, and in particular, prove Theorem 1.3.2Theorem 1.3.2.

In Chapter 5Chapter 5 we focus on combinatorial techniques that are especially useful when

working with the list version of the homomorphism problem. We introduce certain de-

compositions of the target graphs, and present series of structural lemmas that later allow

us, in Chapter 6Chapter 6, to prove Theorem 1.3.3Theorem 1.3.3 We provide a general algorithm that can be used

to derive a series of results on list homomorphisms. We also construct a general gadget

that can express any relation on incomparable sets. We conclude this chapter by demon-

strating how both, the algorithm and the gadget construction can be used to provide the

dichotomy stated in Theorem 1.3.3Theorem 1.3.3.

In Chapter 7Chapter 7 we introduce the auxiliary tools to work with Pt-free and St,t,t-graphs,

and prove Theorem 1.3.4Theorem 1.3.4 and Theorem 1.3.5Theorem 1.3.5. Furthermore, we demonstrate how the lower

bounds that follow from Theorem 1.3.4Theorem 1.3.4 and Theorem 1.3.5Theorem 1.3.5 can be used to derive analogous

results for the Hom(H) problem. Last, in Chapter 8Chapter 8 we discuss the other results of the

author related to the topic of the dissertation.

23

Chapter 2

Preliminaries

We denote by R the set of real numbers, by R+ the set of positive real numbers, by N

the set of positive integers. For an integer n ∈ N we denote by [n] the set of integers

{1, . . . , n}. For a set X and integer k, by 2X we denote the family of all subsets of X and

by
(

X
k

)
(resp.

(
X
⩽k

)
) we denote the family of all subsets of X with exactly (resp. at most)

k elements.

2.1 Graph notations

For a graph G, we denote by V (G) and E(G), respectively, the set of vertices and the set

of edges of G. A vertex v with loop is called reflexive, otherwise v is irreflexive. A set of

vertices is called (ir)reflexive if its every element is (ir)reflexive. Similarly, a graph G is

called (ir)reflexive if V (G) is (ir)reflexive. Unless explicitly stated otherwise, we assume

that graphs are finite, undirected, irreflexive and with no multiple edges.

By NG(v) we denote the set of neighbors of v and by NG[v] we denote the set NG(v) ∪

{v}. Note that if v is reflexive, then v ∈ NG(v), so NG(v) = NG[v]. For a set U ⊆ V (G),

by NG(U) we denote the set ⋃u∈U NG(u) \ U , and by NG[U] the set NG(U) ∪ U . For a

vertex v ∈ V (G) the degree degG v of G is the number of neighbors of v. We omit the

subscript and write N(v), N [v], N(U), N [U], deg v respectively, if G is clear from the

context. Also, if U = {u1, . . . , uk}, we omit internal brackets and write N(u1, . . . , uk) and

N [u1, . . . , uk]. By ∆(G) we denote maxv∈V (G) deg v.

For a set U ⊆ V (G) (resp. U ⊆ E(G)) we denote by G[U] the subgraph of G induced

by U , i.e., (U, {uv ∈ E(G) | u, v ∈ U}) (resp. (⋃uv∈U{u, v}, U)). By G − U we denote the

24

graph G[V (G) \ U].

We say that two vertices u, v of G are incomparable if N(u) ̸⊆ N(v) and N(v) ̸⊆ N(u).

We say that a set S of vertices is incomparable if its elements are pairwise incomparable.

Let k ∈ N. A clique Kk is the complete graph on k vertices. A path Pk is a graph

such that V (Pk) = {w1, . . . , wk}, and wiwj ∈ E(Pk) for some i, j ∈ [k] if and only if

i ∈ {j − 1, j + 1}. If k ⩾ 3 by Ck we denote a cycle, i.e., V (Ck) = {w1, . . . , wk}, and

wiwj ∈ E(Ck) for some i, j ∈ [k + 1] if and only if i ∈ {j − 1, j + 1} modulo k.

A walk W in G of length d is a sequence (w1, . . . , wd+1) of vertices of G, such that

for every i ∈ [d] vertices wi and wi+1 are adjacent. In order to simplify the notation,

whenever is does not lead to confusion we will identify sequences of the vertices with sets

of these vertices. The length of a path Pk is the length of the walk that uses all vertices

of Pk precisely once, i.e., k − 1. The length of a cycle Ck is k. We call a cycle of odd

(resp. even) length an odd cycle (resp. even cycle). A bipartite graph is a graph that does

not contain odd cycles. For p, q ∈ N, by Kp,q we denote the complete bipartite graph, i.e.

graph consisting of two sets of vertices of cardinality, respectively, p and q, and all possible

edges between them. The odd girth og(G) of a non-bipartite graph G is the length of the

smallest odd cycle in G. By ω(G) we denote the size of a largest clique contained in G.

A matching in G is a subset M ⊆ E(G) such that each vertex is incident to at most one

vertex in M .

A subset U of vertices of a graph G is independent if they are pairwise non-adjacent

in G. For two subsets U1 and U2 of V (G) by dist(U1, U2) (resp. distW (U1, U2) for some

W ⊆ V (G)) we denote the length of a shortest path between an element of U1 and an

element of U2 (resp. using only vertices of W), note that dist(U1, U2) = 0 if and only in

U1 ∩ U2 ̸= ∅. We say that two disjoint subsets U1, U2 of V (G) are non-adjacent if there is

no edge with one vertex in U1 and the other in U2. Analogously, we say that U1, U2 are

complete to each other if for every u1 ∈ U1 and u2 ∈ U2 we have u1u2 ∈ E(G).

If a graph G admits a k-coloring, we say that G is k-colorable. The chromatic number

of G, denoted by χ(G), is the smallest integer k such that G is k-colorable.

25

2.2 Graph parameters

Tree decompositions and treewidth. A tree decomposition of a graph G is a pair(
T , {Xa}a∈V (T)

)
, in which T is a tree, whose vertices are called nodes and {Xa}a∈V (T) is

the family of subsets (called bags) of V (G), such that

1. every v ∈ V (G) belongs to at least one bag Xa,

2. for every uv ∈ E(G) there is at least one bag Xa such that u, v ∈ Xa,

3. for every v ∈ V (G) the set Tv := {a ∈ V (T) | v ∈ Xa} induces a connected subgraph

of T .

The width of a tree decomposition
(
T , {Xa}a∈V (T)

)
is the number maxa∈V (T) |Xa| − 1.

The minimum possible width of a tree decomposition of G is called the treewidth of G

and denoted by tw(G).

t-expressions and clique-width. For a positive integer t, let a t-graph be a graph

whose vertices are labeled by the elements of [t]. For convenience, we consider a graph to

be a t-graph with all vertices labeled by 1. Two t-graphs are isomorphic if their underlying

unlabeled graphs are isomorphic. We call the t-graph consisting of exactly one vertex v,

labeled by i ∈ [t], an initial t-graph and denote it by i(v).

We consider the following three operations on t-graphs.

(1) Disjoint union: for two t-graphs G1 and G2 by G1 ⊕G2 we denote their disjoint union;

(2) Relabeling: for a t-graph G and distinct i, j ∈ [t], by ρi→j(G) we denote the t-graph

obtained by changing all labels on vertices labeled i to j;

(3) Edge insertion: for a t-graph G and distinct i, j ∈ [t], by ηi,j(G) we denote the t-graph

obtained by adding an edge from each vertex labeled by i to each vertex labeled by j.

For a t-graph G a t-expression σ defining G is a rooted binary tree (whose vertices

we call nodes) defined as follows. Here, we associate with every node τ of σ a maximal

subtree of σ rooted at τ . Each τ corresponds to a graph Gτ isomorphic to some subgraph

of G. We call Gτ the evaluation of τ . Each non-root leaf node τ of σ corresponds to an

unique v ∈ V (G) and Gτ = i(v) for some i ∈ [t]. Each other node τ of σ is labeled with

one of the symbols ⊕, ρi→j or ηi,j (where i, j ∈ [t]) called the root operation of τ , so that:

26

vv

Figure 2.1: An 4-expression defining graph G (in the left-most node). Different labels
are represented by different colors. The nodes marked with dashed lines are nodes with
root operation being, respectively (from left to right): edge insertion, relabeling, disjoint
union, and an initial node.

1. Each node labeled ⊕ has precisely two children τ1 and τ2, and Gτ = Gτ1 ⊕ Gτ2 .

2. Each node labeled ρi→j, for some distinct i, j ∈ [t] has an unique child τ ′, and

Gτ = ρi→j(Gτ ′).

3. Each node labeled ηi,j, for some distinct i, j ∈ [t] has an unique child τ ′, and

Gτ = ηi,j(Gτ ′).

In other words, each node τ corresponds to a t-graph G′ that can be constructed by

applying the root operation of τ to the t-graphs corresponding to the children of τ (see

Figure 2.1Figure 2.1). By V i
τ ⊆ V (Gτ) we denote the set of vertices with label i in Gτ .

If σ is a t-expression, we call t the width of σ. For a graph G, the clique-width of G is

the smallest k such that there exists a t-expression σ defining a k-graph isomorphic to G.

27

Chapter 3

Graph homomorphisms: toolbox

In this chapter we present a variety of notions regarding homomorphisms in the non-list

setting. In particular, we use the tools introduced below to prove Theorem 1.3.2Theorem 1.3.2, which

is demonstrated in Chapter 4Chapter 4. Further applications of the contents of the present chapter

are discussed in the last section of Chapter 7Chapter 7.

3.1 Basic concepts

For two graphs G and G, if there exists a homomorphism f : G → H, we denote it by

G → H. If there is no such homomorphism, we write G ̸→ H. If G → H and H → G,

then we say that G and H are homomorphically equivalent. If G ̸→ H and H ̸→ G,

we say that G and H are incomparable. An endomorphism of G is any homomorphism

h : G → G. An automorphism of G is a bijective endomorphism. If X ⊆ Y ⊆ V (G), and

f : X → V (H), then a homomorphism g : G[Y] → H such that g|X ≡ f is an extension

of f (to Y).

A graph G is a core if G ̸→ H for every proper subgraph H of G. Equivalently, we

can say that G is a core if and only if every endomorphism of G is an automorphism. A

graph G is ramified if for every distinct u, v ∈ V (G) we have N(u) ̸⊆ N(v). Note that

if N(u) ⊆ N(v), then there always exists a homomorphism h : G → G that is not an

automorphism: one could define h : G → G that is an identity on all vertices of G but u

and set h(u) = v. This implies the following observation.

Observation 3.1.1. Every core is ramified. □

If H is a subgraph of G such that G → H and H is a core, we say that H is a core of G.

28

Notice that if H is a subgraph of G, then H → G, so every graph is homomorphically

equivalent to its core. Moreover, if H is a core of G, then H is always an induced subgraph

of G, because every endomorphism f : G → H restricted to H must be an automorphism.

It can be shown that every graph has a unique core (up to an isomorphism), see for

example [6565]. Therefore, when considering the Hom(H) problem, usually it is enough to

focus only on these graphs H that are cores.

We observe that if H contains a reflexive vertex v, then, for any graph G, there always

exists a homomorphism from G to H. Indeed, in a such case, the function that maps every

vertex of G to the vertex v is always a homomorphism. Thus, if H contains a vertex with

a loop, its core is always the graph that consists of one vertex with a loop, that we denote

by K◦
1 . On the other hand, since loop is also an edge, note that if v ∈ V (G) has a loop

and f : G → H, then f(v) must have a loop.

We say that a graph H is trivial if its core is isomorphic to K1, K◦
1 , or K2. It is

straightforward to verify that these three graphs are the only cores with fewer than 3

vertices. The graphs whose cores are trivial are simple to describe.

Observation 3.1.2. Let H ′ be a graph, whose core H is trivial.

1. H ≃ K1 if and only if χ(H ′) = 1, i.e., H ′ has no edges,

2. H ≃ K2 if and only if χ(H ′) = 2, i.e., H ′ is bipartite and has at least one edge,

3. H ≃ K◦
1 if and only if H ′ is not irreflexive.

In particular, every graph that has a loop is trivial. □

Observation 3.1.2Observation 3.1.2 together with the dichotomy theorem of Hell and Nešetřil [6767] imply

that H is trivial if and only if Hom(H) is polynomial-time solvable. Since most of the

time we are interested in NP-complete cases of Hom(H), we usually focus on non-trivial

target graphs. Note that if H is non-trivial and an instance G of Hom(H) has a loop,

then G is clearly a no-instance—thus we always implicitly assume that an instance of

Hom(H) is irreflexive.

The following conditions are necessary for G to have a homomorphism into H.

Observation 3.1.3 ([6666]). Assume that G → H and G and H are irreflexive. Then

ω(G) ⩽ ω(H), χ(G) ⩽ χ(H), and og(G) ⩾ og(H).

29

Let m ∈ N. For graphs H1, . . . Hm we denote by H1 + . . . + Hm the disconnected

graph with connected components H1, . . . , Hm. Observe that if f is a homomorphism

from G = G1 + . . . + Gℓ to H = H1 + . . . + Hm, then it maps every connected component

of G to some connected component of H. Also note that a graph does not have to be

connected to be a core, in particular the following characterization follows directly from

the definition of a core.

Observation 3.1.4. A disconnected graph H is a core if and only if its connected com-

ponents are pairwise incomparable cores. □

An example of a pair of incomparable cores is shown in Figure 3.1Figure 3.1: it is the Grötzsch

graph, denoted by GG, and the complete graph K3. It can be verified that og(GG) >

og(K3) and χ(GG) > χ(K3), so by Observation 3.1.3Observation 3.1.3, GG and K3 are incomparable.

Therefore, by Observation 3.1.4Observation 3.1.4, the graph GG + K3 is a core.

Figure 3.1: An example of incomparable cores, the Grötzsch graph (left) and K3 (right).

3.2 Projectivity

For graphs H1, H2, we define their direct product, denoted by H1 × H2 to be the graph:

V (H1 × H2) :={(x, y) | x ∈ V (H1) and y ∈ V (H2)} and

E(H1 × H2) :={(x1, y1)(x2, y2) | x1x2 ∈ E(H1) and y1y2 ∈ E(H2)}.

If H = H1 × H2, then the tuple (H1, H2) is a factorization of H, and H1 and H2 are

its factors. Clearly, the binary operation × is commutative, and also associative (up to

isomorphism), thus we can extend the definition of a direct product for more than two

factors:

H1 × · · · × Hm−1 × Hm := (H1 × · · · × Hm−1) × Hm.

30

In this and the following chapters we are going to consider products of graphs that are

products themselves. Formally, the vertices of such graphs are tuples of tuples. If it

does not lead to confusion, for x̄ := (x1, . . . , xk1) and ȳ := (y1, . . . , yk2), we will treat

tuples (x̄, ȳ), (x1, . . . , xk1 , y1, . . . , yk2), (x̄, y1, . . . , yk2), and (x1, . . . , xk1 , ȳ) as equivalent.

This notation is generalized to more factors in a natural way. Moreover, for any graph H

and for an integer m, we denote by Hm the graph

Hm :=
m︷ ︸︸ ︷

H × . . . × H .

As an example, instead of writing ((x1, x2), y1) ∈ V ((H1×H1)×H2), we write (x1, x2, y1) ∈

V (H2
1 × H2).

Note that if H1 ×H2 has at least one edge, then H1 ×H2 ≃ H1 if and only if H2 ≃ K◦
1 .

We say that a graph H on at least two vertices is prime if the fact that (H1, H2) is a

factorization of H implies that either H1 ≃ K◦
1 or H2 ≃ K◦

1 . A graph that is not prime,

is decomposable. A factorization where each factor is prime and not isomorphic to K◦
1 , is

called a prime factorization.

Recall that a graph is trivial if and only if its core has fewer than 3 vertices, and that

by Observation 3.1.2Observation 3.1.2, any bipartite graph is trivial. It turns out that connected non-trivial

graphs have unique prime factorizations (see also Theorem 8.17 in [6363]).

Theorem 3.2.1 (McKenzie [9393]). Any connected non-bipartite graph with more than

one vertex has a unique prime factorization into prime factors (with possible loops), up

to the permutation of factors.

Let λ = (H1, . . . , Hm) be a (not necessarily prime) factorization of a graph H and let

i ∈ [m]. The function πλ
i : V (H) → V (Hi) such that for every (x1, . . . , xm) ∈ V (H) it

holds that πλ
i (x1, . . . , xm) = xi is a projection on the i-th coordinate. If a factorization

λ is clear from the context, we omit the superscript and write πi. The definition of the

direct product implies that every projection πλ
i is a homomorphism from H to Hi.

Below we summarize some basic properties of direct products.

Observation 3.2.2. Let H = H1 × . . . × Hm be a graph.

1. If Hi = K1 for some i, then H consists of isolated verticess.

2. If some Hi is bipartite then H is bipartite.

31

3. If H1 = . . . = Hm, (i.e., H = Hm
1) then {(x, . . . , x) | x ∈ V (H1)} induces a copy of

H1 in H. In particular, if m ⩾ 2 in a such case, then H is never a core.

4. If H1, H2, . . . , Hm are connected, then H is connected if and only if at most one Hi

is bipartite.

5. For every G it holds that G → H if and only if G → Hi for all i ∈ [m].

Proof. Items (11), (22), (33) are straightforward to observe. Item (44) follows from a result

of Weichsel [115115], see also [6363, Corollary 5.10]. To prove (55), consider a homomorphism

f : G → H and let λ = (H1, . . . , Hm). Clearly, H → Hi for every i ∈ [m] because each

projection πλ
i : H → Hi is a homomorphism. So πλ

i ◦ f is a homomorphism from G to Hi.

On the other hand, if we have some fi : G → Hi for every i ∈ [m], then we can define a

homomorphism f : G → H by setting f(x) := (f1(x), . . . , fm(x)) for every v ∈ V (G).

The following observation is a consequence of Observation 3.2.2Observation 3.2.2 and the definition of

direct product.

Observation 3.2.3. Let H be a non-trivial connected core, and let (H1, . . . , Hm) be its

factorization, such that Hi ̸≃ K◦
1 for all i ∈ [m]. Then for i ∈ [m] the graph Hi is a

non-trivial connected core, incomparable with Hj for j ∈ [m] \ {i}.

Proof. By the fact that direct product is commutative, it is enough to prove that H1 a

non-trivial connected core, incomparable with H2. To see that H1 is non-trivial, assume

otherwise. By our assumption, H1 ̸≃ K◦
1 . If H1 ≃ K1 (resp. H1 ≃ K2), then by

Observation 3.2.2Observation 3.2.2 (11) (resp. Observation 3.2.2Observation 3.2.2 (22)), the core of H is K1 (resp. K2). As

H is non-trivial, we reach a contradiction.

The fact that H1 is connected follows from the definition of direct product. Now

suppose that H1 is not a core and let H ′
1 be the core of H1, so a proper induced subgraph

of H1. Define H ′ = H ′
1 × H2 × . . . × Hm. Since H ′

1 is a proper induced subgraph of H1,

graph H ′ is a proper induced subgraph of H. Let f : H1 → H ′
1. Define a homomorphism

f ′ : H → H ′ as follows: f ′(x1, . . . , xm) := (f(x1), x2, . . . , xm). Observe that since f is a

homomorphism, so is f ′. Therefore H admits a homomorphism into its proper induced

subgraph, so H is not a core, a contradiction.

Finally, assume that H1 and H2 are not incomparable. Without loss of generality,

there exists g : H2 → H1. Then, the set {(g(x2), x2, . . . , xm) ∈ V (H) | x2 ∈ V (H2)}

32

induces a subgraph isomorphic to H2 × H3 × . . . × Hm in H. Since we always have

H → H2 × H3 × . . . × Hm, and H is a core, it follows that H ≃ H2 × H3 × . . . × Hm. But

this implies that H1 ≃ K◦
1 , a contradiction.

A homomorphism f : Hm → H is idempotent, if for every x ∈ V (H) it holds that

f(x, x, . . . , x) = x. Observe that each projection from Hm to H is idempotent. One of

the main characters in our study of the Hom(H) problem is the class of projective graphs

(also called essentially unary), considered e.g. in [7777, 8585, 9696, 110110]. Let m ⩾ 2. We say

that a graph H is m-projective if every idempotent homomorphism from Hm to H is a

projection. We say that a graph H is projective, if it is m-projective for every m ⩾ 2.

Intuitively, a graph is projective, if all homomorphisms of the form f : Hm → H for

m ⩾ 2 depend on a single argument of f . This is formalized as follows.

Observation 3.2.4. If H is a projective core and f : Hm → H is a homomorphism, then

f ≡ g ◦ πi for some i ∈ [m] and some automorphism g of H.

Proof. Define g : V (H) → V (H) by g(x) := f(x, . . . , x). The function g is an endo-

morphism of H and H is a core, so g is in fact an automorphism of H. Observe that

g−1 ◦ f is an idempotent homomorphism, so it is equal to πi for some i ∈ [m], because H

is projective. From this we get that f ≡ g ◦ πi.

It is known that projective graphs are always connected [8585]. Many graphs are known

to be projective: it includes e.g., Kneser graphs (so in particular complete graphs), and

non-bipartite, connected, ramified graphs which do not contain C4 as a subgraph (so in

particular odd cycles) [8383]. Recall also that asymptotically almost all graphs are projec-

tive [8888].

We note that if H is non-trivial and projective, then it must be prime. Indeed, assume

that (H1, H2) is a factorization of some non-trivial H, and that H ̸≃ K◦
1 , H2 ̸≃ K◦

1 .

Consider a homomorphism f : (H1×H2)2 → H1×H2, defined as f((x, y), (x′, y′)) = (x, y′).

Note that it is idempotent, but not a projection, so H is not projective.

On the other hand, we do not know whether there are any non-projective non-trivial

connected cores that are prime. This problem was studied in a slightly more general

setting by Larose and Tardif [8585, Problem 2], and it remains wide open. We restate it as

a conjecture, only for restricted case that H is a core, which is sufficient for our purpose.

33

Conjecture 1. Let H be a connected non-trivial core. Then H is projective if and only

if it is prime.

If it comes to core graphs, it appears that even for connected graphs the properties of

being projective and being a core are independent. In particular, the graph in Figure 3.2Figure 3.2

is not a core, but is projective. Indeed, it is not a core, since it can be mapped to a

triangle, but as already mentioned, Larose [8383] proved that all non-bipartite, connected,

ramified graphs which do not contain C4 as a (non-necessarily induced) subgraph, are

projective. On the other hand, there are non-projective cores, an example is GG × K3,

see Figure 3.1Figure 3.1.11

Figure 3.2: An example of a projective graph which is not a core.

3.2.1 Constructible sets

Let H be a graph, let t ⩾ 1, and let S ⊆ V (H)t. A triple (F, φ, x), such that F is a graph,

φ : V ′ → V (H) is a mapping with domain V ′ ⊆ V (F), and x = (x1, . . . , xt) ∈ V (F)t, is a

construction of S if

{(h(x1), h(x2), . . . , h(xt)) | h : F → H is an extension of φ} = S.

See Figure 3.3Figure 3.3 for an example.

v x

b

c

d
e

a

Figure 3.3: An example of a construction (F, φ, (x)) (left) of a subset S = {a, b, c, d} of
vertices of H (right). Here, F is a path on four vertices, V ′ = {v}, and φ maps v to e.

1Since we were not able to find a simple argument for proving that GG × K3 is a core, this fact was
verified by exhaustive computer search.

34

We say that S ⊆ V (H)t is constructible if there exists a construction of S. In partic-

ular, if (F, φ, x) is a construction of S such that φ is of empty domain, we omit φ, write

(F, x), and call (F, x) an S-gadget.

The relation between projectivity of a graph H and the ability to construct the subsets

of V (H) was estabilished by Larose and Tardif.

Theorem 3.2.5 (Larose, Tardif [8585]). A graph H on at least three vertices is projec-

tive if and only if every set S ⊆ V (H) is constructible.

We observe that Theorem 3.2.5Theorem 3.2.5 can be restated as follows.

Corollary 3.2.6. A graph H on at least three vertices is projective if and only if for every

t ∈ N and every S ⊆ V (H)t there exists a construction of S.

Proof. The backward implication follows from Theorem 3.2.5Theorem 3.2.5 for t = 1, so we need to show

the forward implication. Let p = |S|, and let S = {(s1
1, . . . , s1

t), . . . , (sp
1, . . . , sp

t)}. Define

F = Hp, V ′ = {(a, . . . , a) | a ∈ V (H)} ⊆ V (F), and φ : V ′ → V (H) to be the function

that maps every (a, . . . , a) ∈ V (F) to a. Moreover, define x = (x1, . . . , xt) ⊆ V (F)t so

that xi = (s1
i , s2

i , . . . , sp
i) for every i ∈ [t]. We claim that (F, φ, x) is a construction of S.

Let (sj
1, . . . , sj

t) ∈ S for some j ∈ [p]. We define f : F → H to be the j-th projection

πj. Clearly, πj is an idempotent homomorphism and thus an extension of φ. Since

(f(x1), . . . , f(xt)) = (sj
1, . . . , sj

t),

we have that {(h(x1), . . . , h(xt)) | h : F → H is an extension of φ} ⊇ S.

On the other hand, assume that h : F → H is an extension of φ. Then, by definition

of φ, h must be idempotent. Hence, as H is projective, f ≡ πj for some j ∈ [p], i.e.,

f is a projection on the j-th coordinate. Thus, (h(x1), h(x2), . . . , h(xt)) = (sj
1, . . . , sj

t) ∈

S, which means that {(h(x1), . . . , h(xt)) | h : F → H is an extension of φ} ⊆ S. This

concludes the proof.

To provide constructions that work not only for projective graphs, we are going to

have a closer look on how constructible sets behave on decomposable graphs. For that

we generalize notions of idempotency and projectivity that we introduced in the previous

section. Let H be a graph with factorization (H1, H2), such that H1 is non-trivial, and

H2 is either non-trivial, or isomorphic to K◦
1 . A homomorphism f : Hℓ

1 × H2 → H1

35

such that for every x ∈ V (H1), y ∈ V (H2), it holds that f(x, x, . . . , x, y) = x is called

H1-idempotent. The graph H is said to be H1-projective, if for every ℓ ⩾ 2 and every

H1-idempotent homomorphism f : Hℓ
1 × H2 → H1 there exists i ∈ [ℓ] such that f ≡ πi.

We note that if H2 = K◦
1 , then H is H1-projective if and only if it is projective.

Further generalizations of the projectivity property were studied by Larose [8383, 8484],

Nešetřil and Siggers [9595]. In [8484] strongly projective graphs were defined: a graph H1 on

at least three vertices is strongly projective if for every connected graph W on at least

two vertices, and every ℓ ⩾ 2 the only H1-idempotent homomorphisms f : Hℓ
1 × W → H1

are projections {πλ
i }i∈[ℓ], where λ = (H1, . . . , H1, W) is a factorization of Hℓ

1 × W . Note

that if H1 is strongly projective, then, in particular, every graph H that is of the form

H1 × W , for some graph W , is H1-projective.

Interestingly, Larose [8383, 8484] proved that members of all known families of projective

graphs are in fact strongly projective. He also asked whether the same holds for all

projective graphs. We state as a conjecture a weaker form of his question, that is sufficient

in our setting.

Conjecture 2. Let H1 be a projective graph. Then every core H with factorization

(H1, W), for some graph W , is H1-projective.

The next lemma is a generalization of Corollary 3.2.6Corollary 3.2.6 and establishes the relation

between H1-projective graphs and constructions of certain relations. It plays a crucial

role in the proof of lower bounds in Chapter 4Chapter 4. Let t ∈ N, and let H be a graph with

factorization λ = (H1, W). For a relation S ⊆ V (H1)t, and y = (y1, . . . , yt) ∈ V (W)t, we

denote by R[S, y] ⊆ V (H)t a t-ary relation such that:

(R1) for every (s1, . . . , st) ∈ S we have ((s1, y1), . . . , (st, yt)) ∈ R[S, y],

(R2) for every ((s1, y′
1), . . . , (st, y′

t)) ∈ R[S, y] we have (s1, . . . , st) ∈ S.

We emphasize that R[S, y] does not have to be unique.

Lemma 3.2.7. Let t ∈ N, and let H be a graph with factorization λ = (H1, W), such

that H1 is non-trivial, and W is either non-trivial or isomorphic to K◦
1 . Assume that H

is H1-projective. Let S ⊆ V (H1)t, and let y = (y1, . . . , yt) ∈ V (W)t. Then there exists a

construction (F, φ, x) of R[S, y]. Moreover, |F | ⩽ |V (H)|t.

36

Proof. Let p = |S|, and let S = {(s1
1, . . . , s1

t), . . . , (sp
1, . . . , sp

t)}. We define F = Hp
1 × W ,

V ′ = {(a, . . . , a, b) | a ∈ V (H1), b ∈ V (W)} ⊆ V (F), and φ : V ′ → V (H1 × W) to be the

function that maps every (a, . . . , a, b) to (a, b). Moreover, define x = (x1, . . . , xt) ⊆ V (F)t

so that for every i ∈ [t] we have

xi = (s1
i , s2

i , . . . , sp
i , yi).

Let α be a factorization of Hp
1 that is a p-tuple (H1, . . . , H1). Let

R[S, y] = {(h(x1), . . . , h(xt)) | h : Hp
1 × W → H1 × W is an extension of φ}.

We claim that R[S, y] satisfies (R1) and (R2).

Let (sj
1, . . . , sj

t) ∈ S for some j ∈ [p]. We define f : F → H1 × W :

f(v1, . . . , vt, y′) = (πα
j (v1, . . . , vt), y′).

As (f(x1), . . . , f(xt)) = ((sj
1, y1), . . . , (sj

t , yt)),f is a homomorphism, and an extension of

φ, we have that R[S, y] satisfies (R1).

For (R2), let h : F → H1 × W be an extension of φ. By the definition of φ, a

homomorphism h1 : Hp
1 × W → H1, defined as h1 ≡ πλ

1 ◦ h must be H1-idempotent.

Hence, as H is H1-projective, h1 ≡ πα
i for some j ∈ [p], i.e., h1 is the projection on the j-th

coordinate. Thus, (h(x1), h(x2), . . . , h(xt)) = ((sj
1, y′

1), . . . , (sj
t , y′

t)) for some (sj
1, . . . , sj

t) ∈

S and y′
1, . . . , y′

t ∈ V (W), which means that R[S, y] satisfies (R2). Since |F | ⩽ |V (H)|t,

this concludes the proof.

Here we stated and proved Lemma 3.2.7Lemma 3.2.7 in a very general form. We note however that

an analogous method was already used by Okrasa and Rzążewski [100100] to determine tight

complexity bounds for the Hom(H) problem parameterized by treewidth of the instance

graph.

Lemma 3.2.8 ([100100]). Let H be a non-trivial core with factorization λ = (H1, W), such

that H1 is non-trivial, and W is either non-trivial or isomorphic to K◦
1 . Assume that H is

H1-projective. Let S ⊆ V (H)2 be the inequality relation, i.e., S = {(u, v) ∈ V (H)2 | u ̸=

v}, and let y ∈ V (W). Then there exists an R[S, (y, y)]-gadget.

37

?

Figure 3.4: An instance (G, φ) of ExtHom(H) (left). The graph G′ (middle) where the
colors of vertices of V ′ and Ĥ illustrate which vertices are forced to be mapped to the
same vertex of H. A homomorphism f from G to H (right) that does not extend φ.
However, it is straightforward to verify that there exists an automorphism of H that can
be composed with f to obtain an extension of φ.

For the last result of this section, we first define a generalization of the Hom(H)

problem, in which an instance can have some vertices already mapped to the vertices of

H. For a fixed H, ExtHom(H) takes as an instance a pair (G, φ), where G is a graph

and φ : V ′ → V (H) is a mapping from some V ′ ⊆ V (G). We ask whether there exists a

homomorphism that is an extension of φ to V (G). Note that ExtHom(H) is a special

case of LHom(H), in which every list is either equal to V (H) or contains one element.

We observe that the Hom(H) problem is precisely the ExtHom(H) problem with

V ′ = ∅. Moreover, note that for t ⩾ 1 and a set S ⊆ V (H)t, while an S-gadget is, in

particular, an instance of the Hom(H) problem, a construction of S is an instance of

ExtHom(H).

It turns out that if H is a core, we can reduce ExtHom(H) to Hom(H) as follows.

Theorem 3.2.9. Let H be a fixed core. Given an instance (G′, φ) of ExtHom(H), we

can construct an equivalent instance G of Hom(H) such that G′ is an induced subgraph

of G, and |V (G)| = |V (G′)| + |V (H)|.

Proof. Let V ′ ⊆ V (G′) be the domain of φ. We construct G as follows: first, we take G′

and a copy Ĥ of H. For brevity, we slightly abuse the notation and assume that H and

Ĥ have the same set of vertices; formally in such a case we should use an isomorphism

between H and Ĥ. Next, we add an edge vu for every v ∈ V ′ and u ∈ V (Ĥ) if φ(v)u ∈

E(H). That concludes the construction, see Figure 3.4Figure 3.4.

We first prove that if there exists an extension h : G′ → H of φ, then h can be further

38

extended to G, by setting h(v) = v for every v ∈ V (Ĥ). Indeed, to see that such h is a

homomorphism from G to H consider uv ∈ E(G). If u, v ∈ V (G′), then h(u)h(v) ∈ E(H),

by the assumption that h is a homomorphism. If u, v ∈ V (Ĥ), then uv ∈ E(H), thus,

h(u)h(v) = uv ∈ E(H). Finally, assume that v ∈ V (G′), u ∈ V (Ĥ). Note that, by the

definition of G, this can happen only if v ∈ V ′ and u is adjacent to φ(v) in H. Hence,

h(u)h(v) = uφ(v) ∈ E(H).

For the reverse direction, assume that there exists a homomorphism f : G → H.

We show that there exists an extension h : G′ → H of φ. Let σ : Ĥ → H be the

restriction of f to Ĥ. Since H is a core, σ is an isomorphism. We claim that the function

g ≡ σ−1 ◦ f : V (G) → V (H) is an extension of φ to G (so in particular, is an extension

of φ to G′). Observe that by the definition of g, if v ∈ V (Ĥ), then g(v) = v.

Clearly, g is a composition of homomorphisms, so also a homomorphism. Therefore,

it remains to show that for every v ∈ V ′ we have φ(v) = g(v). Consider a vertex v ∈ V ′.

Since H is a core, by Observation 3.1.1Observation 3.1.1, H is ramified. Thus, as NG(φ(v)) ∩ V (Ĥ) ⊆

NG(v), we have that f(v) = f(φ(v)). It follows that

g(v) = σ−1(f(v)) = σ−1(f(φ(v))) = g(φ(v)).

However, recall that for every u ∈ V (Ĥ) we have that g(u) = u, so since φ(v) ∈ V (Ĥ),

in particular, g(v) = φ(v).

Finally, the facts that G′ is an induced subgraph of G, and that |V (G)| = |V (G′)| +

|V (H)| follow from the construction.

3.3 Signature sets

Let H be a graph. For a non-empty set T ⊆ V (H) we say that SH(T) is the signature set

of T if SH(T) = ⋂
t∈T N(t) (see Figure 3.5Figure 3.5). We omit the subscript and write S(T) if it

does not lead to confusion. We say that a non-empty set Q ⊆ V (H) is a signature set, if

there exists T such that Q = S(T). We denote by S(H) the set of all signature sets of H.

We observe some basic properties of signature sets.

Observation 3.3.1. Let T ⊆ V (H) be non-empty.

1. If a ∈ T , b ∈ S(T), then ab ∈ E(H). In particular, for every a ∈ T we have

39

a

b

c

d e

f

g
S({b, c}) = {a, d},
S({b, c, g}) = S({c, f}) = {a},
S({b, e}) = S({c, e}) = {d}.

Figure 3.5: An example of graph H and signature sets of some of the subsets of V (H). It
can be verified that s(H) = 18.

S(T) ⊆ NH(a).

2. If T ′ ⊆ V (H) is non-empty, then S(T ∪T ′) = S(T)∩S(T ′). In particular, if T ⊆ T ′,

then S(T) ⊇ S(T ′).

Proof. The first statement follows directly from the definition of a signature set. For

the second one, observe that S(T ∪ T ′) = ⋂
t∈T ∪T ′ N(t) = ⋂

t∈T N(t) ∩ ⋂
t∈T ′ N(t) =

S(T) ∩ S(T ′).

We also note that the operation of taking a signature set is reversible on S(H).

Observation 3.3.2. If T is a non-empty proper subset of V (H), then T ⊆ S(S(T)).

Moreover, if T ∈ S(H), then the reverse also holds, and S(S(T)) = T .

Proof. By the definition of a signature set, for each two vertices u, v ∈ V (H) such that

u ∈ T and v ∈ S(T), we have uv ∈ E(H), so T ⊆ S(S(T)). For the converse direction

observe that if T ∈ S(H), there exists a non-empty subset A of V (H) such that T =

S(A). Pick any u ∈ S(S(T)). Clearly, for every v ∈ S(T) we have uv ∈ E(H). Since

A ⊆ S(S(A)) = S(T), in particular, for every v ∈ A we have uv ∈ E(H). Hence by

definition u ∈ S(A) = T .

We observe that a signature set of a graph that is a direct product is precisely the

Cartesian product of signature sets of its factors.

Observation 3.3.3. Let H = H1 × H2. Then S(H) = S(H1) × S(H2).

Proof. We prove that S(H) is of the form

S(H) = {SH1(T1) × SH2(T2) | ∅ ̸= Ti ⊆ V (Hi) and SHi
(Ti) ̸= ∅ for i = 1, 2}.

40

Let T1 and T2 be some non-empty subsets of, respectively, V (H1) and V (H2). Clearly,

SH1(T1) × SH2(T2) =
 ⋂

t∈T1

NH1(t)
×

 ⋂
t′∈T2

NH2(t′)
 =

⋂
(t,t′)∈T1×T2

NH1×H2(t, t′)

= SH(T1 × T2).

(3.1)

Therefore, if SH1(T1) and SH2(T2) are non-empty, we get that SH1(T1) × SH2(T2) ∈ S(H).

To see that S(H) ⊆ S(H1) × S(H2), we show that for every non-empty T ⊆ V (H)

the set SH(T) ∈ S(H) is of the form SH1(T1) × SH2(T2) for some T1 ⊆ V (H1), T2 ⊆

V (H2). Define T1 and T2 to be minimal sets such that T ⊆ T1 × T2. Hence, by (3.13.1),

SH1(T1) × SH2(T2) = SH(T1 × T2) ⊆ SH(T). On the other hand, for every (s, s′) ∈ SH(T)

we have s ∈ ⋂
t∈T1 NH1(t) and s′ ∈ ⋂

t′∈T2 NH2(t′), so the equality follows.

Let the signature number of H, denoted s(H), be defined as |S(H)|. Observe that if

H is non-trivial, so in particular irreflexive, for every non-empty T ⊆ V (H) we have that

S(T) ∩ T = ∅. From that it is easy to see that V (H) never belongs to S(H). Since, by

definition, ∅ /∈ S(H), we get the following bounds for s(H).

Observation 3.3.4. Let H be an irreflexive graph. Then s(H) ⩽ 2|V (H)| − 2. □

Notice that since 2|V (H)| − 2 is the number of all proper non-empty subsets of V (H), the

equality in Observation 3.3.4Observation 3.3.4 holds if and only if H is a clique. We note that if H is a

core graph, we can also bound the minimum cardinality of S(H).

Observation 3.3.5. Let H be a non-trivial core. Then s(H) ⩾ 2|V (H)|, and if H does

not contain C4 as a subgraph, then the equality holds.

Proof. Recall that a core is always ramified and thus N(v) ̸⊆ N(u) for every distinct

u, v ∈ V (H). It is straightforward to verify that a non-trivial core does not contain

vertices of degree smaller than two. Thus, for each v ∈ V (H) we have |N(v)| ⩾ 2, and

clearly N(v) ∈ S(H), as S({v}) = N(v). Hence different vertices give rise to |V (H)|

signature sets, denote the family of these sets by S1. On the other hand, we have that

S(N(v)) = {v}, as if u ∈ S(N(v)), then N(v) ⊆ N(u) and thus u = v. Therefore,

different neighborhoods give rise to another |V (H)| signature sets, denote them by S2.

Observe that S1 ∩ S2 = ∅, as elements of S2 are singletons, while sets in S1 contains at

least two elements.

41

Now, if we additionally assume that H does not contain C4 as a subgraph, we claim

that there is no element T ∈ S(H) that is not of the form {v} or N(v) for some v ∈ V (H).

Otherwise, there exist a, b ∈ T and c, d ∈ S(T), all distinct, and by Observation 3.3.1Observation 3.3.1 1.,

graph H[{a, c, b, d}] contains a C4.

We observe that the signature number can never increase by taking an induced sub-

graph of a graph.

Observation 3.3.6. Let H ′ be a graph and let H be an induced subgraph of H ′. Then

s(H) ⩽ s(H ′).

Proof. Given a connected graph Q without loops, consider an equivalence relation ∼Q

on the set of nonempty subsets of V (Q) defined as follows: V1 ∼Q V2 if and only if V1

and V2 have the same signature sets in Q. Observe that s(Q) is equal to the number

of equivalence classes of ∼Q minus one (as there are subsets V such that S(V) = ∅).

Hence to prove the claim, it suffices to show that whenever two subsets of V (H) belong

to different equivalence classes of ∼H , they also belong to different equivalence classes of

∼H′ . For this, consider any two non-empty subsets V1 and V2 of V (H) such that V1 ≁H V2.

Since SH(V1) ̸= SH(V2), by symmetry of V1 and V2, we can assume that there exists

v ∈ SH(V1)\SH(V2). Then for every t ∈ V1 we have vt ∈ E(H) ⊆ E(H ′), i.e., v ∈ SH′(V1).

On the other hand, there exists t0 ∈ V2 such that vt0 /∈ E(H), as otherwise v would belong

to SH(V2). As H is induced subgraph of H ′, it means that vt0 /∈ E(H ′). Hence, v does

not belong to SH′(V2) and thus V1 ≁H′ V2.

We note that the signature number of H is the sum of signature numbers over its

connected components.

Observation 3.3.7. Let H be a graph, and let H1, . . . , Hm be the connected components

of H. Then

S(H) = S(H1) ∪ . . . ∪ S(Hm),

and for each element S of S(H) there exists an unique i ∈ [m] such that S ∈ S(Hi).

Proof. Clearly, if S ∈ S(Hi) for some i ∈ [m], then S ∈ S(H). On the other hand,

observe that for every set T that is not contained in V (Hi) for some i ∈ [m], we have that

S(T) = ∅, hence S(T) is not included in S(H).

42

If Q ∈ S(H), we call T such that S(T) = Q a witness of Q. Clearly, we can have

distinct T1, T2 such that S(T1) = S(T2), however, notice that in such a case there exists

T = T1 ∪T2 such that S(T) = S(T1) = S(T2). Hence, there exists a unique maximal (with

respect to inclusion) witness of Q, and we denote it by M(Q). In fact, it is not difficult

to see that M(Q) = {v ∈ V (H) | Q ⊆ NH(v)}.

As the last thing of this section, we observe that each signature set is constructible.

Indeed, let S ∈ S(H), and let T ⊆ V (H) be a witness of S. Let F be the star with the

central vertex c and the set X of |T | leaves, and let φ : X → T be any bijection. Then it

is straightforward to verify that (F, φ, X) is a construction of S.

43

Chapter 4

The homomorphism problem

parameterized by clique-width

In this chapter we prove Theorem 1.3.2Theorem 1.3.2 and discuss its generalizations.

Theorem 1.3.2. Let H be a fixed non-trivial projective core, and let cw(G) be the clique-

width of an n-vertex instance graph G.

(a) Assuming a cw-expression of G of optimal width and size polynomial in n is given,

the Hom(H) problem can be solved in time s(H)cw(G) · nO(1).

(b) There is no algorithm solving the Hom(H) problem in time (s(H) − ε)cw(G) · nO(1),

for any ε > 0, unless the SETH fails.

The algorithmic and hardness part of the problem are the subject of, respectively,

Section 4.1Section 4.1 and Section 4.2Section 4.2.

4.1 The algorithm

As a first step, we present an algorithm that plays a crucial role for the upper bound, i.e.,

it implies Theorem 1.3.2Theorem 1.3.2 (a).

Theorem 4.1.1. Let H be a fixed graph, and let G be an n-vertex graph. Assuming a

t-expression of G of and size polynomial in n is given, the Hom(H) problem can be solved

in time s(H)t · nO(1).

44

Proof of Theorem 4.1.1Theorem 4.1.1. Let σ be a k-expression defining G. First, we observe that we

can assume that:

(a) for each node τ = ρi→j(τ ′) of σ, there is at least one vertex with label i in Gτ ′ ,

(b) for each node τ = ηi,j(τ ′) of σ, there is at least one vertex with label i and at least

one vertex with label j in Gτ ′ .

Indeed, if this is not the case, we can delete the node τ from σ and connect the unique

child τ ′ of τ to the parent of τ , if one exists. This operation produces an equivalent

t-expression that defines G. Since the number of nodes in σ is polynomial in n, this step

can be performed in time polynomial in n.

If G is disconnected, we process every connected component of G independently. If

|V (G)| = 1, we return that G is a yes-instance, as K1 → H for every graph H. From now

on, let us assume that G is connected and |V (G)| > 1. We describe a dynamic program

that proceeds in a leaf-to-root fashion along σ.

For a node τ of σ, we say that i is a live label in τ if there is an edge of G which is

incident to V i
τ and does not appear in Gτ . Observe that in this case, by the construction

of the t-expression, for every v ∈ V i
τ there exists such an edge incident to v. Denote the

set of live labels in τ by Lτ . Since G is connected, Lτ ̸= ∅ for any non-root node τ of σ.

Our algorithm, for each node τ of σ, computes a set Pτ consisting of functions p : Lτ →

S(H) where p ∈ Pτ if and only if

there exists hp : Gτ → H s.t. for every i ∈ Lτ we have p(i) ⊆ S(hp(V i
τ)). (4.1)

In other words, we add p to Pτ if and only if there exists a homomorphism hp : Gτ → H

such that the signature set of the image of vertices labeled i contains vertices from p(i).

Intuitively, we use p(i) to preemptively store the images of the neighbors of V i
τ in the

final graph G—that is why p(i) is not necessarily the exact signature, but could be any

signature that occurs as a subset. We say that p ∈ Pτ describes the homomorphism hp

in τ or, equivalently, that hp witnesses p in τ .

First, we describe how to compute the sets Pτ , and the intuition standing behind

these computations. Then we argue that by computing Pτ we can compute the solution

to Hom(H), and show correctness of our computations, i.e., that (4.14.1) is satisfied. Last,

we discuss the complexity of computing sets Pτ .

45

We distinguish the cases based on the root operation of τ .

Case: τ = i(v) for some i ∈ [t]. In this case Lτ = {i}, since we assume that G is

connected and |V (G)| > 1. We add to Pτ all functions p : {i} → S(H).

Case: τ = ρi→j(τ ′) for the unique child τ ′ of τ . If i ̸∈ Lτ ′ then clearly j /∈ Lτ and

we set Pτ = Pτ ′ . Otherwise, if i ∈ Lτ ′ and j ̸∈ Lτ ′ , every p ∈ Pτ arises from some p′ ∈ Pτ ′

by replacing i by j in the domain:

Pτ = {(p′ \ (i, S)) ∪ (j, S) | S = p′(i) ∧ p′ ∈ Pτ ′} .

Finally, if i ∈ Lτ ′ , j ∈ Lτ ′ , then Lτ = Lτ ′ \ {i} and Pτ = {p′|Lτ | p′ ∈ Pτ ′ ∧ p′(i) = p′(j)}.

Intuitively, we simply rename label i to j, however, since after this step the vertices

labeled i and j in τ ′ are indistinguishable, we first ensure that the image of their potential

neighbors is the same.

Case: τ = τ1 ⊕ τ2 for children τ1 and τ2 of τ . In this case Lτ = Lτ1 ∪ Lτ2 as

E(Gτ) = E(Gτ1) ∪ E(Gτ2) and

Pτ = {p = p1 ∪ p2 | p1 ∈ Pτ1 ∧ p2 ∈ Pτ2 ∧ (∀ℓ ∈ Lτ1 ∩ Lτ2 : p1(ℓ) = p2(ℓ))}

Intuitively, we will construct a homomorphism on the disjoint union of two subgraphs

by “gluing together” the homomorphisms on the subgraphs. If the subgraphs share any

live labels, after this step they will all be treated equally. For this reason we require the

images of the neighbors of such labels to be the same in both subgraphs.

Case: τ = ηi,j(τ ′). In this case Lτ = Lτ ′ \ I where I ⊆ {i, j} is the set of live labels

in τ ′ that are no longer live labels in τ . We set:

Pτ = {p | ∃p′ ∈ Pτ ′ : p′(i) ⊇ S
(
p′(j)

)
∧ p|Lτ \{i,j} = p′|Lτ \{i,j}

∧ p(i) ⊆ p′(i) ∧ p(j) ⊆ p′(j)}.

where for ℓ ∈ I, we interpret p(ℓ) as an empty set.

Intuitively, we can add the edges between vertices in two live labels if and only if we

first ensure there are edges between their images. This concludes the description of how

to compute Pτ . Before we show that it respects (4.14.1), we argue that computing all Pτ

indeed solves the problem.

46

For that, note that it is enough to prove that a mapping p : Lσ → S(H) belongs to Pσ

if and only if there exists h : G → H such that for every i ∈ Lσ we have p(i) ⊆ S
(
h
(
V i

σ

))
.

As Lσ = ∅, this is equivalent to saying that the empty mapping p belongs to Pσ if and

only if there exists h : G → H. Thus, we can read the answer from Pσ: if contains the

empty mapping, i.e., Pσ = {∅}, then G → H, otherwise Pσ = ∅ and G ̸→ H.

Thus it remains to show that p : Lσ → S(H) ∈ Pσ if and only if (4.14.1) is satisfied. The

proof of each implication is provided in a form of a separate claim.

Claim 4.1.1.1. If p ∈ Pτ , then (4.14.1) is satisfied, i.e., there exists hp : Gτ → H such that

for every i ∈ Lτ we have p(i) ⊆ S
(
hp

(
V i

τ

))
.

Proof of Claim. First, we consider the base case of our algorithm.

Case: τ = i(v) for some i ∈ [t]. Since p(i) ∈ S(H), by Observation 3.3.1Observation 3.3.1 2.,

there exists u ∈ V (H) such that p(i) ⊆ NH(u). Then p describes the homomorphism

hp : Gτ → H defined by hp(v) = u.

Now let us assume that τ is a non-leaf node, and that the claim holds for all its

children. There are three possible types of τ .

Case: τ = ρi→j(τ ′) for the unique child τ ′ of τ . Let p′ ∈ Pτ ′ be a function such

that p arises from p′ in the construction of Pτ . Consider a witness h : Gτ ′ → H of p′ ∈ P ′
τ .

For every ℓ ∈ Lτ \ {j} we have p(ℓ) = p′(ℓ) ⊆ S
(
h
(
V ℓ

τ ′

))
= S

(
h
(
V ℓ

τ

))
, where the first

equality follows from the definition of p, the containment is by the inductive assumption,

and the last equality is because V ℓ
τ = V ℓ

τ ′ . If now i /∈ Lτ ′ , then j /∈ Lτ , and thus p describes

h in τ .

Hence assume that i ∈ Lτ ′ and note that in a such case j ∈ Lτ . Now p(j) = p′(i) ⊆

S
(
h
(
V i

τ ′

))
, by definition of p and the inductive assumption, and if additionally j ∈ Lτ ′ ,

then p(j) = p′(j) ⊆ S
(
h
(
V j

τ ′

))
. By Observation 3.3.1Observation 3.3.1, if j ∈ Lτ ′ , we have

p(j) ⊆ S
(
h
(
V i

τ ′

))
∩ S

(
h
(
V j

τ ′

))
= S

(
h
(
V i

τ ′

)
∪ h

(
V j

τ ′

))
= S

(
h
(
V i

τ ′ ∪ V j
τ ′

))
= S

(
h
(
V j

τ

))
.

Hence p describes h in τ . On the other hand, if j /∈ Lτ ′ , then V i
τ ′ = V j

τ , and we have

p(j) ⊆ S
(
h
(
V i

τ ′

))
= S

(
h
(
V j

τ

))
. Again, p describes h in τ .

Case: τ = τ1 ⊕ τ2 for children τ1 and τ2 of τ . Let p1 ∈ Pτ1 , p2 ∈ Pτ2 be functions

such that p = p1 ∪ p2. Let hi be a witness of pi in τi, for i = 1, 2. As the domains of h1

47

and h2 are disjoint, we can define h = h1 ∪ h2. Since there are no edges between V (Gτ1)

and V (Gτ2) in Gτ , h is a homomorphism from Gτ to H.

Observe that for all ℓ ∈ Lτ1 \ Lτ2 , we have p(ℓ) = p1(ℓ) ⊆ S
(
h1
(
V ℓ

τ

))
= S

(
h
(
V ℓ

τ

))
,

by inductive assumption, similarly for ℓ ∈ Lτ2 \ Lτ2 . For ℓ ∈ Lτ1 ∩ Lτ2 , for every i ∈

{1, 2} by inductive assumption we have p(ℓ) = pi(ℓ) ⊆ S
(
hi

(
V ℓ

τi

))
. Therefore, again by

Observation 3.3.1Observation 3.3.1:

p(ℓ) ⊆ S
(
h1
(
V ℓ

τ1

))
∩ S

(
h2
(
V ℓ

τ2

))
= S

(
h1
(
V ℓ

τ1

)
∪ h2

(
V ℓ

τ2

))
= S

(
h
(
V ℓ

τ

))
.

Hence h is a witness of p in τ .

Case: τ = ηi,j(τ ′) for the unique child τ ′ of τ . Let p′ ∈ Pτ ′ be a function such

that p arises from p′ in the construction of Pτ . Consider a witness h : Gτ ′ → H of p′ ∈ P ′
τ .

First, we note that h is a homomorphism from Gτ to H. For that, it is enough to show

that h preserves edges between V i
τ and V j

τ . Recall that p′(i) ⊇ S(p′(j)) by the definition of

Pτ , and the inductive assumption gives us that p′(i) ⊆ S
(
h
(
V i

τ ′

))
and p′(j) ⊆ S

(
h
(
V j

τ ′

))
.

Along with Observations 3.3.13.3.1 and 3.3.23.3.2 this results in

S
(
h
(
V i

τ ′

))
⊇ p′(i) ⊇ S

(
p′(j)

)
⊇ S

(
S
(
h
(
V j

τ ′

)))
⊇ h

(
V j

τ ′

)
.

Hence h
(
V i

τ

)
× h

(
V j

τ

)
⊆ E(H), so h is a homomorphism from Gτ to H. By construction,

for every ℓ ∈ Lτ it holds that p(ℓ) ⊆ p′(ℓ) ⊆ S
(
h
(
V ℓ

τ

))
. Thus h witnesses p in τ , and

that concludes the proof of claim. ⌟

Now we show the converse implication.

Claim 4.1.1.2. Let p : Lτ → S(H). Assume that (4.14.1) is satisfied, i.e., there exists

h : Gτ → H such that for every i ∈ Lτ we have p(i) ⊆ S
(
h
(
V i

τ

))
. Then p ∈ Pτ .

Proof of Claim. Again, we first consider the base case of our algorithm.

Case: τ = i(v) for some i ∈ [t]. In this case clearly p ∈ Pτ , as Lτ = {i} and Pτ

contains all possible functions from {i} to S(H).

Now let us assume that τ is a non-leaf node, and that the claim holds for all its

children. There are three possible types of τ .

Case: τ = ρi→j(τ ′) for the unique child τ ′ of τ . First, we observe that if i /∈ Lτ ′ ,

then clearly i /∈ Lτ . Moreover, in this case, j ̸∈ Lτ . Indeed, otherwise, by the definition

48

of a live label, this means that G contains edges incident to V j
τ that do not appear in

Gτ . By construction of a clique-width expression, such an edge exists for every v ∈ V j
τ ,

in particular for every v ∈ V i
τ ′ ⊆ V j

τ , contradicting the fact that i /∈ Lτ ′ . Hence j ̸∈ Lτ , in

particular j ̸∈ Lτ ′ . Therefore, both i and j are not live neither in τ nor in τ ′, so Lτ ′ = Lτ .

By the inductive assumption, p ∈ P ′
τ . Recall that we set Pτ = Pτ ′ in this case.

If now i ∈ Lτ ′ , then j ∈ Lτ . Define p′ : Lτ ′ → S(H) to be such that for every

ℓ ∈ Lτ ′ \ {i} ⊆ Lτ it holds that p′(ℓ) = p(ℓ), and p′(i) = p(j). By our assumption on h,

for every ℓ ∈ Lτ ′ \ {i, j} we have that p′(ℓ) = p(ℓ) ⊆ S
(
h
(
V ℓ

τ

))
= S

(
h
(
V ℓ

τ ′

))
. Moreover,

p′(i) = p(j) ⊆ S
(
h
(
V j

τ

))
= S

(
h
(
V j

τ ′∪V i
τ ′

))
= S

(
h
(
V j

τ ′

)
∪h
(
V i

τ ′

))
= S

(
h(V j

τ ′

))
∩S

(
h
(
V i

τ ′

))
,

where the last equality is by Observation 3.3.1Observation 3.3.1. This in particular means that if j ∈ Lτ ′ ,

by the definition of p′ we have that p′(j) = p(j) = p′(i) ⊆ S
(
h
(
V j

τ ′

))
∩ S

(
h
(
V i

τ ′

))
. Hence,

p′(i) ⊆ S
(
h
(
V i

τ ′

))
and, if j ∈ Lτ ′ , then p′(j) ⊆ S

(
h
(
V j

τ ′

))
. Therefore, by the inductive

assumption we have that p′ ∈ Pτ ′ .

Now it is straightforward to verify that if j /∈ Lτ ′ then p = (p′\(i, p′(i))∪(j, p′(i)) ∈ Pτ .

Otherwise, i.e., if j ∈ Lτ ′ , we conclude that p = p′|Lτ ∈ Pτ .

Case: τ = τ1⊕τ2 for children τ1 and τ2 of τ . For every i ∈ {1, 2} let pi : Lτi
→ S(H)

be the restriction of p to Lτi
, i.e. pi ≡ p|Lτi

. Clearly, for each ℓ ∈ Lτ1 ∩ Lτ2 we have

p1(ℓ) = p2(ℓ). Moreover, for every i ∈ {1, 2} let hi : Gτi
→ H be the restriction of h to

V (Gτi
).

We observe that for every i ∈ {1, 2} and for every ℓ ∈ Lτi
we have V ℓ

τi
⊆ V ℓ

τ , so

S
(
h
(
V ℓ

τ

))
⊆ S

(
h
(
V ℓ

τi

))
by Observation 3.3.1Observation 3.3.1. In particular,

pi(ℓ) = p(ℓ) ⊆ S
(
h
(
V ℓ

τ

))
⊆ S

(
h
(
V ℓ

τi

))
= S

(
hi

(
V ℓ

τi

))
.

Hence, by the inductive assumption, for every i ∈ {1, 2} we have pi ∈ Pτi
. This, combined

with the definition of Pτ , implies that p ∈ Pτ .

Case: τ = ηi,j(τ ′) for the unique child τ ′ of τ . Recall that the first item of our

preprocessing stage guarantees that i, j ∈ Lτ ′ . We define p′ : Lτ ′ → S(H) as follows.

p′(ℓ) =


S
(
h
(
V ℓ

τ ′

))
if ℓ ∈ {i, j},

p(ℓ) otherwise.

49

By the assumption on h, for every ℓ ∈ Lτ ′ we have that p′(ℓ) ⊆ S
(
h
(
V ℓ

τ ′

))
. By the

inductive assumption, p′ ∈ Pτ ′ .

We observe that since h is a homomorphism, for every a ∈ h
(
V i

τ ′

)
= h

(
V i

τ

)
and

every b ∈ h
(
V j

τ ′

)
= h

(
V j

τ

)
we have that ab ∈ E(H). Therefore, h

(
V j

τ ′

)
⊆ S

(
h
(
V i

τ ′

))
,

so by Observation 3.3.1Observation 3.3.1 S
(
S
(
h
(
V i

τ ′

)))
⊆ S

(
h
(
V j

τ ′

))
and furthermore S

(
S
(
h
(
V j

τ ′

)))
⊆

S
(
S
(
S
(
h
(
V i

τ ′

))))
. By Observation 3.3.2Observation 3.3.2, as S

(
h
(
V i

τ ′

))
∈ S(H), we have that

S
(
S
(
S
(
h
(
V i

τ ′

)))
= S

(
h
(
V i

τ ′

))
.

Thus, S
(
S
(
h
(
V j

τ ′

)))
⊆ S

(
h(V i

τ ′

))
, or equivalently S

(
p′(j)

)
⊆ p′(i). For ℓ ∈ {i, j} we have

p(ℓ) ⊆ S
(
h
(
V ℓ

τ ′

))
= p′(ℓ), and for every ℓ ∈ Lτ \ {i, j} we have p(ℓ) = p′(ℓ). Therefore,

p ∈ Pτ by the definition of Pτ . This concludes the proof of claim. ⌟

It remains to discuss the complexity of our algorithm. We note that |Pτ | ⩽ s(H)t for

each node τ of σ. Thus, in each node, the computation requires time c · t · s(H)2 · s(H)t

for some constant c > 0. As the preprocessing stage takes time polynomial in |V (G)|, i.e.,

bounded by c′ · |V (G)|d for some constants c′, d > 0, this yields the complexity of

c′′ · |V (G)|d · t · s(H)2 · s(H)t = c′′ · |V (G)|d′ · s(H)t = O∗
(
s(H)t

)
,

where c′′ = max{c, c′} · s(H)2 and d′ = d + 1.

4.1.1 Consequences of Theorem 4.1.1Theorem 4.1.1

While Theorem 4.1.1Theorem 4.1.1 serves as an upper bound that will match our target SETH-based

lower bounds for Hom(H) for, intuitively, the “most difficult” choices of H, in many cases

one can in fact improve the algorithm’s runtime by exploiting well-known properties graph

homomorphisms.

As a simple example showcasing this, consider the 6-wheel graph W6 (see Figure 4.14.1).

Since W6 is 3-colorable, it holds that W6 → K3, and since K3 is a core and an induced

subgraph of W6, it is the core of W6. We recall that if H is the core of H ′, then for

every graph G it holds that G → H if and only if G → H ′. Hence, if G is an instance

of Hom(W6) given with a t-expression of size polynomial in |V (G)| is given, we can solve

it by using Theorem 4.1.1Theorem 4.1.1 for H = K3 to decide whether G → W6 in total running time

O∗(s(K3)t). As s(K3) < s(W6) (as shown in Figure 4.14.1), this yields a better running time

50

12

3

4 5

60
→

Figure 4.1: The graphs W6 (left) and K3 (right).
Colors on the vertices of W6 indicate the homo-
morphism h : W6 → K3. It can be verified that
s(W6) = 19, but, since K3 is a clique, we have
s(K3) = 6. Thus, s(K3) < s(W6).

bound than the direct use of Theorem 4.1.1Theorem 4.1.1. While this example shows that the signature

number can decrease by taking an induced subgraph, recall from Observation 3.3.6Observation 3.3.6 that

it can never increase.

Thus, at this point, we may ask whether the procedure of computing the unique core

H of the fixed connected target graph H ′, and then applying Theorem 4.1.1Theorem 4.1.1 for each of the

connected components of H could yield a tight upper bound for Hom(H ′). Unfortunately,

the situation is more complicated than that. Recall that by Theorem 3.2.1Theorem 3.2.1, each non-

trivial, connected target graph H has a unique prime factorization (H1, . . . , Hm). If we

treat H as a fixed graph, it can be found in constant time. Now, let G be an instance

graph of Hom(H) and assume that the clique-width expression σ of G of width t is given.

If we run Theorem 4.1.1Theorem 4.1.1 separately for every factor of H, by Observation 3.2.2Observation 3.2.2 (5), the

Hom(H) problem can be solved in time maxi∈[m] s(Hi)cw(G) · nO(1).

On the other hand, recall that by Observation 3.3.3Observation 3.3.3, the notion of signature sets we

introduced in the previous section behaves multiplicatively with respect to taking direct

product of graphs. In particular, it follows from Observation 3.3.3Observation 3.3.3 that if H is a graph with

factorization H1×. . .×Hm, then s(H) = s(H1)·. . .·s(Hm). Recall that if K1 and K2 never

appear as a Therefore, if H is non-trivial and not prime, there exist at least two factors

Hi, Hj such that s(Hi) > 1, s(Hj) > 1 (recall Observation 3.2.3Observation 3.2.3 and Observation 3.3.5Observation 3.3.5),

applying Theorem 4.1.1Theorem 4.1.1 separately for each factor of H yields a better running time than

applying it for H. Formally, we obtain the following.

Corollary 4.1.2. Let H be a fixed connected graph and let H ′ be its unique core. Let

(H1, . . . , Hm) be a factorization of H ′. Let G be an instance graph of Hom(H). Assuming

that the clique-width expression of G of width t is given, the Hom(H) problem can be

solved in time maxi∈[m] s(Hi)t · nO(1).

51

4.2 Lower bounds

This subsection is devoted to the proof of the hardness counterpart of Theorem 1.3.2Theorem 1.3.2 (b)

and a discussion of its possible generalizations. To prove it, we again focus on a slightly

different (in fact, more general) theorem. Let H be a non-trivial core, and let (H1, . . . , Hm)

be a prime factorization of H such that s(H1) = maxj∈[m] s(Hj) (if this holds for more

than one factor, we chose one of them arbitrarily). Let W = H2 × . . . × Hm if m ⩾ 2, and

W = K◦
1 otherwise. Define the canonical factorization γ of H to be (H1, W).

We claim that the following theorem implies Theorem 1.3.2Theorem 1.3.2 (b).

Theorem 4.2.1. Let H be a fixed connected non-trivial core, and let γ = (H1, W) be its

canonical factorization. Assume that H is H1-projective. There is no algorithm solving

an instance G of ExtHom(H) in time (s(H1) − ε)cw(G) · nO(1) for any ε > 0, unless the

SETH fails.

Clearly, ExtHom(H) problem is more general than Hom(H). However, Theorem 4.2.1Theorem 4.2.1

together with Theorem 3.2.9Theorem 3.2.9 actually imply Theorem 1.3.2Theorem 1.3.2 (b), as shown below.

Theorem 4.2.1Theorem 4.2.1 → Theorem 1.3.2Theorem 1.3.2 (b): Assume Theorem 1.3.2Theorem 1.3.2 (b) does not hold, i.e.,

there exists an algorithm A that solves every instance G of Hom(H) in time (s(H1) −

ε)cw(G) · nO(1).

Let (G′, φ) be an instance of ExtHom(H). We use Theorem 3.2.9Theorem 3.2.9 to transform (G′, φ)

into an equivalent instance G of Hom(H), such that |V (G)| = |V (G′)| + |V (H)| and G′

is an induced subgraph of G.

Note that cw(G) ⩽ cw(G′) + |V (H)|. Indeed, that we can obtain G by adding exactly

|V (H)| vertices to G′. This means we can modify any cw(G)-expression σ for G′ to obtain

a cw(G)-expression of G as follows. Each added vertex is introduced with a designated

label that is distinct from all labels used in σ. Then each node of σ that introduces a

vertex of G′ can be replaced by a tree that introduces the vertex and inserts all required

edges incident to the vertices of V (G) \ V (G′).

Now we can use use A to decide whether G → H in time

((s(H1) − ε)cw(G) nO(1) = (s(H1) − ε)cw(G′) · (s(H1) − ε)|V (H)|nO(1).

Since H is a fixed graph, (s(H1) − ε)|V (H)| is a constant. As n > 1, we have (s(H1) −

52

ε)cw(G)nO(1) = (s(H1) − ε)cw(G′)nO(1). Since G → H if and only if (G′, φ) is a yes-instance

of ExtHom(H), we get a contradiction with Theorem 4.2.1Theorem 4.2.1. □

Our reduction generalizes the construction used by Lampis [8282] to reduce a certain

variant of CSP, denoted by q-CSP(B), to k-Coloring. Let q, B ⩾ 2 be integers. The

q-CSP(B) problem is defined as follows. An instance of q-CSP(B) consists of a set X of

variables and a set C of q-constraints. A q-constraint c ∈ C is a tuple of at most q′ ⩽ q

elements from X and a set P (c) of tuples of at most q′ elements from [B]. The q-CSP(B)

problem asks whether there exists an assignment γ : X → [B], such that each constraint

is satisfied, i.e., if c = ((x1, . . . , xq), P (c)) ∈ C, then (γ(x1), . . . , γ(xq)) ∈ P (c).

The following theorem of Lampis is the starting point of both reductions.

Theorem 4.2.2 ([8282]). For every B ⩾ 2, ε > 0 there exists q such that n-variable q-

CSP(B) cannot be solved in time (B − ε)nnO(1), assuming the SETH.

On a high level, in the proof of Lampis, the possible variable assignments are encoded

by mapping specified subsets of vertices of an instance to arbitrary non-trivial subsets

of colors. The straightforward generalization of this approach to our setting would be

to map to non-trivial subsets of V (H). However, the structure of H allows only certain

configurations of subsets as images for the specified vertices in a solution for Hom(H)—

which is precisely where the signature sets come into play.

Focusing on the ExtHom(H) problem allows us to slightly simplify the reasoning, as

we can use the fact that some vertices of the defined instance are forced to be mapped

to some specific vertices of H. This nicely combines with Lemma 3.2.7Lemma 3.2.7 that produces

constructions of relations that we use to simulate the constraint satisfaction problem

instance.

To prove Theorem 4.2.1Theorem 4.2.1, we introduce two types of constructions that are used in the

proof. For fixed vertices a, b ∈ V (H1), let Sa→b = {(a′, b′) | a′ ̸= a, b′ ∈ V (H1)} ∪ {(a, b)}.

By Lemma 3.2.7Lemma 3.2.7, for any y = (y1, y2) ∈ V (W)2 there exists a construction of R[Sa→b, y].

Intuitively, we use R[Sa→b, y] to simulate implication a ⇒ b, since in every homomorphism

h : F → H that extends φ, if πγ
1 ◦ h(p) = a, then πγ

1 ◦ h(q) = b. Hence we call this type

of construction an implication construction.

The second type of relation we need to express corresponds to disjunction of arity t,

53

for any fixed t ∈ N. Let a, b ∈ V (H1). We define the relation

ORt(a, b) = {(r1, . . . , rt) ⊆ {a, b}t | ri = a for some i ∈ [t]}.

By Lemma 3.2.7Lemma 3.2.7, for any y ∈ V (W) there exists a construction of R[ORt(a, b), yt], where

yt is the t-tuple (y, y, . . . , y). We call this construction an or-construction of arity t.

We have all the tools to perform the final reduction.

Proof of Theorem 4.2.1Theorem 4.2.1. Fix ε > 0 and set B = s(H1). As H is H1-projective, H is

non-trivial, and in particular, B ⩾ 3 by Observation 3.3.53.3.5. Fix two distinct vertices

a, b ∈ V (H1). Since H is a non-trivial core, W must have at least one edge yy′ (it may

happen that y = y′). From now on a, b, y and y′ are fixed. Let q ∈ N be such that

q-CSP(B) on n variables cannot be solved in time (B − ε)nnO(1) assuming the SETH

given by Theorem 4.2.2Theorem 4.2.2.

Let ϕ = (X, C) be an instance of q-CSP(B), where X = {x1, . . . , xn} is the set of

variables and C = {c0, . . . , cm−1} is the set of constraints. For every j ∈ {0, . . . , m −

1} denote by Xj the set of variables that appear in the constraint cj. Let P (cj) =

{f j
1 , . . . , f j

pj
}. Note that each element of P (cj) naturally corresponds to a mapping from

Xj to [B]. Clearly, for every j ∈ {0, . . . , m−1} we have |pj| ⩽ Bq. Let L = m(n|H1|+1),

and let λ : [B] → S(H1) be some fixed bijection.

We construct an instance (Gϕ, L) of ExtHom(H). For each j ∈ {0, . . . , L − 1},

let j′ = j mod m. For every j ∈ {0, . . . , L − 1} let Rj = (rj
1, . . . , rj

pj′) be the tuple

of newly introduced vertices, where each vertex rj
k corresponds to the assignment f j′

k :

Xj′ → [B] (in an arbitrarily fixed order). We introduce the or-construction (Fj, φj, Rj) of

R[ORpj′ (a, b), ypj′].

For each xi ∈ Xj′ , and for each f j′

k ∈ P (cj′) we do the following:

1. Let w = f j′

k (xi) ∈ [B]. Construct an independent set V j,k
i of |λ(w)| vertices and an

independent set U j,k
i of |S(λ(w))| vertices.

2. For each d ∈ λ(w) select a distinct vertex zd ∈ V j,k
i and add an implication construc-

tion (F, φ, (rj
k, zd)) of R[Sa→d, (y, y)]. For each d ∈ S(λ(w)) select a distinct vertex

zd ∈ U j,k
i and add an implication construction (F, φ, (rj

k, zd)) of R[Sa→d, (y, y′)].

3. Connect all vertices of U j,k
i with all vertices of previously constructed sets V ℓ,k′

i for

ℓ < j and k′ ∈ [pℓ] (see Figure 4.24.2).

54

The partial mapping φ is the union of all the partial mappings that are introduced by

the constructions. This concludes the definition of the instance (Gϕ, φ) of ExtHom(H).

Claim 4.2.2.1. If ϕ is a yes-instance of q-CSP(B), then there is a homomorphism h :

Gϕ → H that extends φ.

Proof of Claim. If ϕ is a yes-instance of q-CSP-B, then there exists an assignment γ :

X → [B] satisfying each constraint. We define h : Gϕ → H as follows.

Fix j ∈ {0, . . . , L−1}, and consider the or-construction (Fj, φj, Rj) of R[ORpj′ (a, b), ypj′].

Recall that the set P (cj′) consists of all assignments of variables in Xj′ that satisfy the

constraint cj′ . Therefore, there exists an assignment f j′

k ∈ P (cj′) such that λ|Xj′ ≡ f j′

k .

Consider the vertex rj
k that corresponds to that assignment. By Lemma 3.2.7Lemma 3.2.7 (R1), we

know that there exists a homomorphism h : Fj → H1 × W that extends φ, such that

(i) πγ
1 ◦ h(rj

k) = a,

(ii) for every rj
k′ ∈ Rj, k′ ̸= k we have that πγ

1 ◦ h(rj
k′) = b.

Let xi ∈ Xj′ and let w = f j′

k (xi) ∈ [B]. Since for each d ∈ λ(w) there exists a vertex

zd ∈ V j,k
i such that there is an implication construction (F, φ, (rj

k, zd)) of R[Ra→d, (y, y)],

the condition (i) implies that πγ
1 ◦ h(V j,k

i) = λ(w). We assign the vertices of H to the

vertices of V j,k
i in a way that h(V j,k

i) = λ(w) × {y}.

Also, since for each d ∈ S(λ(w)) there exists a vertex zd ∈ U j,k
i such that there is an

implication construction (F, φ, (rj
k, zd)) of R(Ra→d, (y, y′)), the condition (i) implies that

h1(U j,k
i) = S(λ(w)). We assign the vertices of H to the vertices of U j,k

i in a way that

h(U j,k
i) = S(λ(w)) × {y′}.

Because of (ii), the implication constructions (F, φ, (rj
k′ , z)) for z ∈ V j,k′

i ∪ U j,k′

i do not

put any constraints on the images of the sets V j,k′

i and U j,k′

i . Therefore, for each v ∈ V j,k′

i

we set h(v) to be arbitrarily chosen vertex from λ(w) × {y}. Similarly, for each u ∈ U j,k′

i

we set h(u) to be arbitrarily chosen vertex from S(λ(w)) × {y′}. Since (b, z) ∈ Ra→d for

any z ∈ V (H1) and d ∈ λ(w) ∪ S(λ(w)), Lemma 3.2.7Lemma 3.2.7 (R1) asserts that we can always

extend this to a homomorphism from F to H.

It remains to argue that the edges between the sets V j1,k1
i and U j2,k2

i are mapped to

edges of H, for any j1 < j2 and k1, k2. Indeed, observe that since σ is an extension of

some f
j′

1
k1 ∈ P (cj′

1
) and f

j′
2

k2 ∈ P (cj′
1
), we must have f

j′
1

k1 (xi) = f
j′

2
k2 (xi) = w. Hence, h

55

maps every v ∈ V j1,k1
i to some element of λ(w) × {y}, and every u ∈ U j2,k2

i to some

element of S(λ(w)) × {y′}. By Observation 3.3.13.3.1, and since yy′ ∈ E(W), we get that

h(v)h(u) ∈ E(H). That concludes the proof of the claim. ⌟

Claim 4.2.2.2. If there exists a homomorphism h : Gϕ → H that extends φ, then ϕ is a

yes-instance of q-CSP-B.

Proof of Claim. We will define the assignment σ : X → [B] that makes every constraint

from C satisfied. Let h1 = πγ
1 ◦ h : Gϕ → H1.

Fix j ∈ {0, . . . , L−1}, and consider the or-construction (Fj, φj, Rj) of R[ORpj′ (a, b), ȳpj′].

By the definition of ORpj′ (a, b), there exists k = kj ∈ [pj′] such that h1(rj
k) = a. Observe

that the implication gadgets (F, φ, (rj
k, z)) for z ∈ V j,k

i ∪U j,k
i assert that h1(V j,k

i) ∈ S(H1)

and that SH1(h1(V j,k
i)) = h1(U j,k

i). Then, by Observation 3.3.2Observation 3.3.2, we have

SH1(h1(U j,k
i)) = SH1(SH1(h1(V j,k

i)) = h1(V j,k
i).

Denote h1(U j,k
i) by T j

i , then h1(V j,k
i) = SH1(T j

i). Recall that rj
k corresponds to an assign-

ment f j′

k ∈ P (cj′). Let wj
i = f j′

k (xi) be the candidate assignment at index j for xi ∈ Xj′ ,

recall that by the step 2. of the definition of Gϕ we have wj
i = λ−1(SH1(T j

i)).

Let i ∈ [n] be fixed and let j1, j2 ∈ [L], j1 < j2 be such that xi ∈ Xj′
1

∩ Xj′
2
. Observe

that T j1
i ⊇ T j2

i . Indeed, denote k1 = kj1 and k2 = kj2 and observe that we have

(i) h1(V j1,k1
i) = SH1(T j1

i) and h1(U j1,k1
i) = T j1

i ,

(ii) h1(V j2,k2
i) = SH1(T j2

i) and h1(U j2,k2
i) = T j2

i .

Recall that each vertex from U j2,k2
i is adjacent to each vertex from V j1,k1

i . Since h1 is a

homomorphism, the same holds for their images: each vertex from T j2
i is adjacent to each

vertex from SH1(T j1
i). Then SH1(T j2

i) ⊇ SH1(T j1
i), so

T j1
i = SH1(SH1(T j1

i)) ⊇ SH1(SH1(T j2
i)) ⊇ T j2

i .

We say that an index j1 ∈ {0, . . . , L − 1} is problematic for i if there is j2 > j1

such that xi ∈ Xj′
1

∩ Xj′
2

and T j1
i ̸= T j2

i . Since for each variable we have at most |H1|

problematic indices, there are at most |V (H1)| · n problematic indices for all variables.

Since L = m(|V (Hi)| · n + 1), by pigeonhole principle we get that there exists a set

56

J ⊆ {0, . . . , L−1} of m consecutive indices such that none of them is problematic for any

i. For every i ∈ [n], we fix some j ∈ J such that xi ∈ Xj′ and set λ(xi) = wj
i (observe

that here the choice of j does not matter).

We claim that λ is an assignment that satisfies every constraint from ϕ. Indeed, for

any j′ ∈ [m] there exists j ∈ J such that j′ = j mod m. For every i ∈ Xj′ , we have

σ(xi) = wj
i = f j′

kj
(xi), so λ satisfies cj′ . This concludes the proof of claim. ⌟

Finally, it remains to adapt the arguments of Lampis [8282] to establish the desired

clique-width bound.

Claim 4.2.2.3. Gϕ can be constructed in time polynomial in n, and we have cw(Gϕ) ⩽

n + f(ε, |V (H)|) for some function f .

Proof of Claim. By Lemma 3.2.7Lemma 3.2.7 (R3), every implication construction has at most

|V (H)||V (H)|2 vertices. By the same property, each or-construction of arity pj′ has |V (H)|pj′

vertices.

For fixed H and ε > 0, by Observation 3.3.4Observation 3.3.4 we have that B = s(Hi) ⩽ 2|V (Hi)| − 2

and q is a constant that only depends on B, ε (that is, on |V (Hi)|, ε). Each constraint of

the q-CSP(B) instance has at most Bq satisfying assignments. In particular, the number

of vertices in each or-construction is upper-bounded by |V (H)|Bq . Therefore, we see that

the whole construction can be performed in polynomial time, if H is fixed and ε is a

constant. In the clique-width expression for Gϕ we use the following labels:

1. n main labels, representing the variables of ϕ.

2. A single done label. Its informal meaning is that a vertex that receives this label

will not be connected to anything else not yet introduced in the graph.

3. |V (H)|Bq or-construction labels.

4. qBq · |V (H)||V (H)|2 variable-constraint incidence work labels.

Thus, f(ε, |V (H)|) = 1 + |V (H)|Bq + qBq · |V (H)||V (H)|2 .

To give a clique-width expression we will describe how to build the graph, following

essentially the steps given in the description of the construction by maintaining the fol-

lowing invariant: before starting iteration j, all vertices of the set W j
i = ⋃

j′<j

⋃
k∈[pj′] V j′,k

i

have label i, and all other vertices introduces so far have the done label. This invariant

57

is vacuously satisfied at the beginning, since the graph is empty. Suppose that for some

j ∈ {0, . . . , L − 1} the invariant is true. We use the |V (H)|Bq or-construction labels

to introduce the vertices of the pj′-or-gadget (Fj, φj, Rj), giving each vertex a distinct

label. We use join operations to construct the internal edges of the or-gadget. Then,

for each variable xi that appears in the current constraint we do the following: we use

qBq · |V (H)||V (H)|2 of the variable-constraint incidence work labels to introduce for all

k ∈ [pj′] the vertices of V j,k
i and U j,k

i as well as the implication gadgets connecting these

to rj
k . Again we use a distinct label for each vertex, but the number of vertices (including

internal vertices of the implication gadgets) is at most qBq · |V (H)||V (H)|2 , so we have

sufficiently many labels to use distinct labels for each of the q variables of the constraint.

We use join operations to add the edges inside all implication gadgets. Then we use join

operations to connect U j,k
i to all vertices W j

i . This is possible, since the invariant states

that all the vertices of W j
i have the same label i. We then rename all the vertices of U j,k

i

for all k to the done label, and do the same also for internal vertices of all implication

gadgets. We proceed to the next variable of the same constraint and handle it using

qBq · |V (H)||V (H)|2 labels. Once we have handled all variables of the current constraint,

we rename all vertices of each V j,k
i to label i for all k. We then relabel all vertices of

the pj′-or-gadget (Fj, φj, Rj) gadget to the done label and increase j by 1. Now it is

straightforward to verify that we have maintained the invariant and constructed all edges

induced by the vertices introduced in steps up to j, so repeating this process constructs

the graph. ⌟

Together the claims imply Theorem 4.2.1Theorem 4.2.1 in the following way: For an arbitrary

instance ϕ of q-CSP(B), our construction produces an instance I = (Gϕ, φ) of Ex-

tHom(H), and the instances are equivalent by Claim 4.2.2.1Claim 4.2.2.1 and Claim 4.2.2.2Claim 4.2.2.2. Assume

that we can solve I = (Gϕ, φ) in time (s(H1) − ε)cw(Gϕ) · |V (Gϕ)|O(1) for ε > 0. We can

use our construction to transform ϕ into (Gϕ, φ) in time polynomial in n. Thus, it would

be possible to solve ϕ in time

(
s(H1) − ε

)cw(Gϕ)
· |V (Gϕ)|O(1) + nO(1) ⩽

(
s(H1) − ε

)n+f(ε,|V (H)|)
· nO(1)

⩽
(

s(Hi) − ε
)f(ε,|V (H)|)

·
(

(s(Hi) − ε
)n

· nO(1).

As
(

s(H1)−ε
)f(ε,|V (H)|)

is a constant that depends only on B = s(H1), ε and H, this proce-

58

dure would have complexity (B−ε)nnO(1). By our choice of q according to Theorem 4.2.2Theorem 4.2.2,

this contradicts the SETH.

Now, Theorem 4.2.1Theorem 4.2.1 gives us the following corollary, that together with Corollary 4.1.2Corollary 4.1.2

give us tight bounds for the complexity of Hom(H) when parameterized by clique-width,

for all connected target graphs.

Corollary 4.2.3. Assume that Conjecture 1Conjecture 1 and Conjecture 2Conjecture 2 hold. Let H be a fixed

connected graph and let H ′ be its core. Let (H1, . . . , Hm) be the prime factorization of H.

Let cw be the clique-width of an n-vertex instance graph G. There is no algorithm solving

the Hom(H) problem in time

max
i∈[m]

(s(Hi) − ε)cw · nO(1),

unless the SETH fails.

Proof. Assume the corollary does not hold, i.e., there exists an algorithm A that solves

Hom(H) in time maxi∈[m](s(Hi) − ε)cw · nO(1).

Let (G′, φ) be an instance of ExtHom(H). Using Theorem 3.2.9Theorem 3.2.9, we transform

(G′, φ) into an equivalent instance G of Hom(H), such that |V (G)| = |V (G′)| + |V (H)|

and G′ is an induced subgraph of G. Recall from the proof that Theorem 4.2.1Theorem 4.2.1 implies

Theorem 1.3.2Theorem 1.3.2 (b) that cw(G) ⩽ cw(G′) + |V (H)|.

Without loss of generality assume that (H1, W), for W = H2 × . . . × Hm, is the

canonical factorization of H. In particular s(H1) = maxj∈[m] s(Hj). Now, by the definition

of a prime factorization, the graph H1 is prime. Thus, assuming Conjecture 1Conjecture 1, H1 is

projective, and assuming Conjecture 2Conjecture 2, the graph H is H1-projective. Thus can use A to

decide whether G → H, and, equivalently, whether φ can be extended to a homomorphism

from G to H, in time

max
i∈[m]

(s(Hi) − ε)cw · nO(1) = (s(H1) − ε)cw · nO(1) = s(H1) − ε)cw(G′)+|V (H)| · nO(1)

= s(H1) − ε)cw(G′) · nO(1),

and this contradicts Theorem 4.2.1Theorem 4.2.1.

As a last remark, let us mention that the restriction to connected target graphs in

Corollary 4.1.2Corollary 4.1.2 and Corollary 4.2.3Corollary 4.2.3 can be avoided: on the algorithmic side, it is enough

59

to branch over all connected component of H (separately for each connected component

of G), while for the lower bound it can be shown that focusing on connected targets solves

the problem in general, for example by repeating the construction in [100100, Lemma 3.4].

60

Figure 4.2: Construction of the instance of ExtHom(K3) for B = 6, variable set
X = {x1, x2, x3} and constraint set C = {c0, c1}. The satisfying assignments f j

k and
the bijection λ are as depicted. The vertices of K3 are a, b, c. Top: fragment of Gϕ re-
stricted to j = 0, 1. Bottom: the homomorphism from Gϕ to H corresponding to the
satisfying assignment γ. Author: Viktoriia Korchemna.

61

Chapter 5

List homomorphisms: toolbox

In this chapter we define the basic notions and tools that we use to study the list version

of the homomorphism problem. For graphs G, H and a function L : V (G) → 2V (H),

we say that a homomorphism h : G → H respects L, if for every v ∈ V (G) we have

h(v) ∈ L(v). In that case we write h : (G, L) → H or simply (G, L) → H, and if no such

homomorphism exists, we write (G, L) ̸→ H.

Since in this and the following sections we consider list homomorphisms, we emphasize

that in contrary to the non-list version, this notion does not trivialize if the target graph

H has loops. Hence, unless explicitly stated otherwise, we assume that all target graphs

H in the following sections may contain loops. Note, however, that we may still assume

that instance graphs G are irreflexive, as it is enough to remove all irreflexive vertices from

the list of a reflexive vertex v ∈ V (G) and then remove its loop to obtain an equivalent

instance.

For a graph G = (V, E), by G∗ we denote the associated bipartite graph G × K2.

Formally, vertices of G∗ are pairs (v, u) such that v ∈ V (G) and u ∈ {u′, u′′} = V (K2).

For brevity, if v ∈ V (G), we denote (v, u′) by v′ and (v, u′′) by v′′. The vertices v′ and v′′

are called twins.

Theorem 5.0.1 ([6262], Theorem 5.9). Let G be a connected graph. Then G is bipartite

if and only if G∗ is disconnected. Moreover, if G is bipartite, then G∗ consists of two

isomorphic copies of G.

For graphs G and H and function L : V (G) → 2V (H) we define the associated list

function L∗ : V (G∗) → 2V (H∗) as follows. For v ∈ V (G), we set L∗(v′) = {a′ | a ∈ L(v)}

62

and L∗(v′′) = {a′′ | a ∈ L(v)}. Note that in the associated lists, the vertices appearing in

L∗(v′) are precisely the twins of the vertices appearing in the list of L∗(v′′).

A homomorphism h : (G∗, L∗) → H∗ is clean if it maps twins to twins, i.e., f(v′) = a′

if and only if f(v′′) = a′′. The following simple observation was the crucial step of the

proof of the complexity dichotomy for list homomorphisms, shown by Feder, Hell, and

Huang [3939]. We state it using slightly different language, which is more suitable for our

purpose.

Proposition 5.0.2 (Feder, Hell, Huang [3939]). There is a homomorphism h : (G, L) →

H if and only if there is a clean homomoprhism (G∗, L∗) → H∗.

Let us point out that the restriction to clean homomorphisms is necessary for the

equivalence. Indeed, consider for example graphs G = K3 and H = C6, and the list

function L : V (G) → 2V (K3) that assigns to each vertex v ∈ V (G) the set V (K3). Clearly

G ̸→ H, so (G, L) ̸→ H. However, we have G∗ ≃ C6 and H∗ ≃ 2C6, so (G∗, L∗) → H∗.

5.1 Bi-arc graphs and their characterizations

As explained that Feder, Hell, and Huang [3939] proved that the LHom(H) problem is

polynomial-time solvable if H is a so-called bi-arc graph, and is NP-complete otherwise.

In their work bi-arc graphs are defined in terms of a certain geometric representations,

however, equivalent definitions in the language of the associated bipartite graphs H∗ are

also provided there. In this section we introduce these definitions, and discuss some

elementary properties of the related objects.

Let C be a circle and let p and q be distinct, fixed points on C. A bi-arc is a pair

(N, S) of arcs such that p ∈ N \ S and q ∈ S \ N . A graph H is bi-arc if there exists

a family {(Nx, Sx) | x ∈ V (H)} of bi-arcs such that, for any (not necessarily distinct)

x, y ∈ V (H) we have that (i) if xy ∈ E(H), then Nx ∩ Sy = Ny ∩ Sx = ∅, and (ii) if

xy ∈ E(H), then Nx ∩ Sy ̸= ∅ and Ny ∩ Sx ̸= ∅.

A circular-arc graph is a graph that can be represented as the intersection graph of a

family of arcs of a circle. An equivalent definition of bi-arc graphs, by Feder et al. [3939],

states that an arbitrary graph H (with loops allowed) is a bi-arc graph if and only if H∗

is the complement of a circular-arc graph.

63

For the other characterization, we first need to consider certain properties of walks.

Let P = (p1, . . . , pℓ) be a walk. By P we denote the walk P reversed, i.e., P = (pℓ, . . . , p1).

If vertices a and b are, respectively, the first and the last vertex of a walk P , we say that

P is an a-b-walk and denote it by P : a → b.

Definition 5.1.1 (Avoiding). For walks P = (p1, . . . , pℓ) and Q = (q1, . . . , qℓ) of equal

length we say P avoids Q if p1 ̸= q1 and for every i ∈ [ℓ − 1] it holds that piqi+1 ̸∈ E(H).

We note that the condition p1 ̸= q1 does not follow from the second condition only if

ℓ = 1.

The following observations are immediate and summarize the basic properties of avoid-

ing walks.

Observation 5.1.2. Assume that P = (p1, p2 . . . , pℓ) avoids Q = (q1, q2, . . . , qℓ). Then

1. Q avoids P,

2. if ℓ ⩾ 2, then q2 ∈ N(q1) \ N(p1) and pℓ−1 ∈ N(pℓ) \ N(qℓ). In particular, N(q1) ̸⊆

N(p1) and N(pℓ) ̸⊆ N(qℓ). □

For walks P = (p1, . . . , pℓ) and Q = (q1, . . . , qk) such that pℓ = q1, we define

P ◦ Q := (p1, . . . , pℓ, q2, . . . , qk).

In particular, (p1, . . . , pℓ) ◦ (pℓ) = (p1, . . . , pℓ). We observe the following.

Observation 5.1.3. If P : x → y avoids Q : p → q and P ′ : y → z avoids Q′ : q → r,

then P ◦ P ′ avoids Q ◦ Q′. □

Recall that if it does not lead to confusion, we identify a sequence of vertices P with

the set of vertices that appear in P , so in particular we say that walks P and Q are

non-adjacent. Clearly, if two walks of the same length are non-adjacent, they avoid each

other.

For a walk P = (p1, p2 . . . , pℓ) and 1 ⩽ i ⩽ j ⩽ ℓ, we define the pi-pj-subwalk of P ,

denoted by P [pi, pj], as P [pi, pj] := (pi, pi+1, . . . , pj−1, pj). (Note that the vertices pi and

pj might appear on P more than once, then P [pi, pj] can be chosen arbitrarily.)

64

uk

vk uk+1

vk+1

uk+2

vk+2

u2k v2k

u2
v2 u1

v1

u0

v0

...

...

W ′
k,k+1

W ′
k+1,k+2

W ′
2k,0

W ′
0,1

W ′
1,2

v4

u3

u2

u1

u0

v3

v4

v1

v0

v2

Figure 5.1: A general scheme of a special edge asteroid (left) and an example (right).

We define a structure called a special edge asteroid, see also Figure 5.1Figure 5.1.11

Definition 5.1.4 (Special edge asteroid). Let H be a bipartite graph, with biparti-

tion classes X and Y , let k ⩾ 1, and let AX = (u0, . . . , u2k) and AY = (v0, . . . , v2k) be

sequences of pairwise distinct vertices, respectively, from X and Y . We say that (AX , AY)

is a special edge asteroid if, for each i ∈ {0, . . . , 2k}, we have uivi ∈ E(H), and there exists

a ui-ui+1-path Wi,i+1 (indices are computed modulo 2k + 1), such that

(a) sets {ui, vi} and {vi+k, vi+k+1} ∪ Wi+k,i+k+1 are non-adjacent, and

(b) sets {u0, v0} and {v1, . . . , v2k} ∪ ⋃2k−1
i=1 Wi,i+1 are non-adjacent.

Now, yet another characterization of bi-arc graphs by Feder et al. [3838, 3939] says that a

(not necessarily bipartite) graph H is a bi-arc graph if and only if H∗ does not contain

an induced cycle on at least 6 vertices or a special edge asteroid.

In a bipartite graph H with bipartition classes X and Y , fix a special edge asteroid

(AX , AY), where AX = (u0, . . . , u2k) and AY = (v0, . . . , v2k). We observe that there might

be many ways to choose paths Wi,i+1. It is convenient for us to use paths that satisfy

certain minimality conditions. We say that a family {Wi,i+1}2k
i=0 of paths is canonical

with respect to (AX , AY), if for each i ∈ {0, . . . , 2k}, the path Wi,i+1 is a shortest path

containing vertices ui, vi, ui+1, vi+1, such that conditions (a) and (b) from Definition 5.1.4Definition 5.1.4
1Let us point out that the definition of a special edge asteroid from [3838] is slightly different than ours:

there it is a set of edges u0v0, u1v2, . . . , u2kv2k, for which there exist paths satisfying properties (a) and
(b) from Definition 5.1.4Definition 5.1.4. However, for our purpose it it much more convenient to think about special
edge asteroids as sequences of vertices.

65

are satisfied. Note that the existence of a canonical family of paths follows directly from

the fact that (AX , AY) is a special edge asteroid. Furthermore, since H is bipartite, each

Wi,i+1 induces either a path or a cycle C4.

For every i ∈ {0, . . . 2k} denote by Wu
i,i+1 (resp. Wv

i,i+1) the ui-ui+1-path (resp. vi-vi+1-

path) that is contained in Wi,i+1. Clearly, Wu
i,i+1 and Wv

i,i+1 are induced paths. Further-

more, the family {Wu
i,i+1}2k

i=0 of paths satisfies the conditions of Definition 5.1.4Definition 5.1.4. Similarly,

the family {Wv
i,i+1}2k

i=0 of paths satisfies conditions (a) and (b) of Definition 5.1.4Definition 5.1.4, with

the roles of ui and vi swapped. Hence, a special edge asteroid is symmetric with respect

to the bipartition of H:

Lemma 5.1.5. Let (AX , AY) be a special edge asteroid, and let {Wi,i+1}2k
i=0 be its canon-

ical family of paths. Then (AY , AX) is a special edge asteroid and {Wi,i+1}2k
i=0 is also the

family of canonical paths for (AY , AX). □

From now on, we always assume implicitly that special edge asteroids (AX , AY) and

(AY , AX) come with a fixed family {Wi,i+1}2k
i=0 of canonical paths. Note that such a family

can easily be found in time polynomial in |V (H)| (for a given asteroid).

For a special edge asteroid (AX , AY) we define the asteroidal subgraph to be the sub-

graph O of H ′ induced by the set ⋃2k
i=0 Wi,i+1. In particular AX ∪ AY ⊆ V (O). Observe

that if O is the asteroidal subgraph for (AX , AY), it is also the asteroidal subgraph for

(AY , AX). Therefore, whenever we find in H an asteroidal subgraph, we can freely choose

the appropriate special edge asteroid, usually we do it implicitly. In a natural way we treat

paths that belong to asteroidal subgraph as walks. In particular, for each i ∈ {0, . . . 2k}

we define Wi+1,i := Wi,i+1, Wu
i+1,i := Wu

i,i+1, and Wv
i+1,i := Wv

i,i+1.

An induced subgraph O of H ′ is an obstruction if it is isomorphic to C6 or C8, or it is

an asteroidal subgraph for some special edge asteroid. Observe that each obstruction is

connected, and each induced cycle on at least 10 vertices contains a special edge asteroid

Summarizing, we can state the characterizations of bi-arc graphs as follows.

Theorem 5.1.6 (Feder, Hell, and Huang [3838, 3939]). Let H be a graph. The following

conditions are equivalent:

• H is a bi-arc graph,

• H∗ is the complement of a circular-arc graph,

66

• H∗ does not contain an obstruction as an induced subgraph.

We note that Theorem 5.1.6Theorem 5.1.6 together with Theorem 5.0.1Theorem 5.0.1 imply that a bipartite graph H

is a bi-arc graph if and only if H is the complement of a circular arc graph. Indeed, if H is

bipartite, then by Theorem 5.0.1Theorem 5.0.1, H∗ consists of two copies of H. Since every obstruction

is a connected subgraph, H is the complement of circular-arc graph if and only if H∗ is.

Let us mention that recognizing circular-arc graphs (and so their complements) can be

done in time polynomial in |V (H)| [9292]. In the positive case we can also find a circular-arc

representation of the input graph. However, up to the best of our knowledge, there is no

known algorithm that provides also a certificate of the negative case. In particular, we

are not aware of any algorithm finding a special edge asteroid in polynomial time.

Obstructions. In this part we discuss some basic properties of obstructions. Here, we

denote the consecutive vertices of the cycle Ck by w1, w2, . . . , wk (with w1wk ∈ E(Ck)).

For special edge asteroids, we use the notation from Definition 5.1.4Definition 5.1.4.

Definition 5.1.7 (C(O)). For an obstruction O, we define

C(O) :=



{(w1, w5), (w2, w4)} if O is isomorphic to C6,

{(w1, w5), (w2, w6)} if O is isomorphic to C8,

{(u0, u1), (v0, v1)} if O is an asteroidal subgraph.

For a pair (α, β) ∈ C(O) we define (α′, β′) to be the other element of C(O). Due

to the symmetry of cycles and Lemma 5.1.5Lemma 5.1.5, we are able to assume symmetry between

the elements of C(O), i.e., the properties of (α, β) that we require are also satisfied for

(α′, β′). Thus in proofs it is usually sufficient to consider one pair in C(O), as the proof

for the other one is analogous.

In the following two observations we notice the existence of some useful walks in O.

Observation 5.1.8. Let O be an obstruction in H and let C(O) = {(α, β), (α′, β′)}.

Then O \ N [α, α′] is connected. In particular, for every pair of vertices x, y of O, such

that x, y ̸∈ N [α, α′], there exists an x-y-walk W [x, y], using only vertices of O, which is

non-adjacent to {α, α′}. □

The notation used in Observation 5.1.8Observation 5.1.8 is justified by interpreting these walks in the case

67

when O is an asteroidal subgraph as subwalks of

W := Wu
0,1[p, u1] ◦ (u1, v1) ◦ Wv

1,2 ◦ (v2, u2) ◦ Wu
2,3 ◦ . . . ◦ Wv

2k−1,2k ◦ (v2k, u2k) ◦ Wu
2k,0[u2k, q],

where p and q are, respectively, the first vertex of Wu
0,1, which is not in N [u0, v0], and the

last vertex of Wu
2k,0, which is not in N [u0, v0].

Observation 5.1.9. Let H be a bipartite graph with an obstruction O, let (α, β) ∈ C(O).

1. There exist walks X , X ′ : α → β and Y , Y ′ : β → α, such that X avoids Y and Y ′

avoids X ′.

2. Let O be an asteroidal subgraph, let γ ∈ {uk+1, vk+1} be in the same bipartition class

as α, β, and let c ∈ {α, β, γ}. Then for any a, b, such that {a, b, c} = {α, β, γ},

there exist walks Xc : α → a and Yc : α → b, and Zc : β → c, such that Xc, Yc avoid

Zc and Zc avoids Xc, Yc.

All walks use only vertices of O.

Proof. Let us start with proving (a) in the case if O is either isomorphic to C6 or to C8;

recall that consecutive vertices of such a cycle are denoted by w1, w2, We can also

assume that α = w1 and β = w5, as the other case is symmetric.

If O ≃ C6, we set

X := (w1, w6, w5, w4, w5) X ′:= (w1, w2, w3, w4, w5),

Y := (w5, w4, w3, w2, w1) Y ′ := (w5, w6, w1, w2, w1).

If O ≃ C8, we set

X = X ′ := (w1, w2, w3, w4, w5),

Y = Y ′ := (w5, w6, w7, w8, w1).

It is straightforward to verify that these walks satisfy the statement (a).

So from now on let us assume that O is an asteroidal subgraph, and, by symmetry,

that α = u0 and β = u1. Then γ = uk+1. Before we proceed to the proof of (a), let us

68

define three auxiliary walks A : u0 → u0, B : u0 → uk+1, and C : u1 → u1, as follows.

A := U0 ◦ U0 ◦ U0 ◦ U0 ◦ . . . ◦ U0 ◦ U0,

B := U0 ◦ Wu
0,2k ◦ U2k ◦ Wu

2k,2k−1 ◦ . . . ◦ Uk+2 ◦ Wu
k+2,k+1,

C := W [u1, uk] ◦ Uk ◦ Wu
k,k−1 ◦ Uk−1 ◦ . . . ◦ Wu

2,1 ◦ U1,

where by Ui we mean a walk (ui, vi, ui, . . . , vi, ui) of the appropriate length (so that the

parts of A, B and C are of the same length), and W [u1, uk] is obtained by Observation 5.1.8Observation 5.1.8.

Note that here we abuse the notation slightly, as the length of each Ui might be different.

By Definition 5.1.4Definition 5.1.4, we have that Ui and Wu
i+k,i+k+1 are non-adjacent, and so are sets

{u0, v0} and {v1, . . . , v2k} ∪ ⋃2k−1
i=1 Wu

i,i+1. So it is straightforward to observe that A, B

avoid C and C avoids A, B.

In order to prove (a), we define

X = X ′ := B ◦ Uk+1 ◦ W [uk+1, u1],

Y = Y ′ := C ◦ Wu
1,0 ◦ U0,

where W [uk+1, u1] is given by Observation 5.1.8Observation 5.1.8, and Ui is defined as previously. Observe

that these walks avoid each other because B and C avoid each other, the walk Wu
1,0 is non-

adjacent to {uk+1, vk+1}, and W [uk+1, u1] is non-adjacent to {u0, v0} by Observation 5.1.8Observation 5.1.8.

Now let us show (b). Consider three cases. If c = u0, then by symmetry assume that

u1 = a, uk+1 = b, and define

Xc := X ◦ U1,

Yc := X ◦ W [u1, uk+1],

Zc := Y ◦ U0,

where walks X , Y are given by statement (a) and W [u1, uk+1] is given by Observation 5.1.8Observation 5.1.8.

Note that in case of asteroidal subgraph we have X = X ′ and Y = Y ′, and therefore X , Y

avoid each other.

If c = u1, then we assume that u0 = a, uk+1 = b and we can observe that our auxiliary

69

walks A, B, C already satisfy the statement of the lemma. Indeed, is it sufficient to set

Xc := A, Yc := B, Zc := C.

Finally, for c = uk+1 and u0 = a, u1 = b, we can define

Xc := U0 ◦ U0,

Yc := U0 ◦ Wu
0,1,

Zc := W [u1, uk+1] ◦ Uk+1,

where W [u1, uk+1] is given by Observation 5.1.8Observation 5.1.8. This completes the proof.

5.2 Decompositions

Recall (Observation 3.2.2Observation 3.2.2) that if a graph H is of the form H1 × . . . × Hm, we can de-

termine whether G → H by checking whether G → Hi for every i ∈ [m]. The proof of

Corollary 4.2.3Corollary 4.2.3 exploits this fact: to solve Hom(H) for every non-trivial target graph H,

it is enough to focus only on these target graphs that are prime (or even projective, assum-

ing Conjecture 1Conjecture 1). Thus, in some algorithmic applications, instead of solving Hom(H),

we can solve Hom(H ′) for every H ′ that is a prime factor of H.

While the factorization approach cannot be easily generalized to the list version of the

problem, in this section we introduce certain notions of decompositions of a graph H that,

intuitively, play a similar role for LHom(H). For every H we define a family Factors(H)

that can be obtained by recursively decomposing H into some “simpler” graphs. Then,

in Chapter 6, we show that, for certain computational applications, is enough to focus on

target graphs that cannot be further decomposed.

Assume first that H is a bipartite graph, in particular, it has no loops. We fix its

bipartition classes X and Y .

Definition 5.2.1 (Bipartite decomposition). For a connected bipartite graph H, a

partition of V (H) into an ordered triple of sets (D, N, R) is a bipartite decomposition if

the following conditions are satisfied.

(B1) N is non-empty and separates D and R,

70

(B2) |D ∩ X| ⩾ 2 or |D ∩ Y | ⩾ 2,

(B3) N induces a biclique in H,

(B4) D ∩ X is complete to N ∩ Y , and D ∩ Y is complete to N ∩ X.

If a connected bipartite graph H admits a bipartite decomposition, then it is decomposable,

otherwise it is undecomposable. If H is disconnected, H is decomposable if any of its

connected components is decomposable. If (D, N, R) is then a decomposition of some

connected component H ′ of H, then (D, N, R ∪ (V (H)\V (H ′))) is a decomposition of H.

Let δ = (D, N, R) be a bipartite decomposition of H. We define graphs H1 and H2

as follows: the graph H1 is the subgraph of H induced by the set D. The graph H2 is

obtained in the following way. For Z ∈ {X, Y }, if D ∩ Z is non-empty, then we contract

it to a vertex dZ . If there is at least one edge between the sets D ∩ X and D ∩ Y , we add

the edge dXdY . We call the pair (H1, H2) the factorization of H with respect to δ, and

define its factors to be H1 and H2. We denote this by Factors(H, δ) = {H1, H2}.

Now we show that when we decompose a graph that is not the complement of a circular-

arc graph, then at least one of its factors is also not the complement of a circular-arc graph.

For the proof, we will require yet another equivalent characterization of bipartite graphs

H, whose complement is a circular-arc graph. Let X, Y be the bipartition classes of H

and consider a circle C with two specified, distinct points p and q. A co-circular-arc

representation of H is mapping of V (H) to the closed arcs of the circle C, such that (i)

each arc corresponding to a vertex from X contains p but not q, (ii) each arc corresponding

to a vertex from Y contains q but not p, and (iii) the vertices are adjacent if and only if

their corresponding arcs are disjoint. It is known that the complement of a bipartite graph

H is a circular-arc graph if and only if H admits a co-circular-arc representation [6464,112112].

Lemma 5.2.2. Let H be a bipartite graph that admits a decomposition (D, N, R) with

factors H1, H2. If both H1 and H2 are complements of circular-arc graphs, so is H.

Proof. We show that we can construct a co-circular-arc representation of H from the

representations of H1 and H2. Fix some representations of H1 and H2 on a circle C with

two specified, distinct points p and q. For every v ∈ V (H1) ∪ V (H2) denote by ṽ the arc

corresponding to v.

Consider the representation of H2. Clearly, at least one of the vertices d̃X and d̃Y

exists, so without loss of generality assume that d̃X ∈ V (H2) and p ∈ d̃X . Observe that

71

(i) since N is a biclique, there must be two (open) arcs, a′
E and a′

W , that are disjoint

with every ṽ such that v ∈ N . We denote by a′
N and a′

S the two (closed) arcs such

that {a′
N , a′

S, a′
E, a′

W } is the partition of the circle. Clearly, (i) every ṽ such that v ∈ N

is contained in a′
N or a′

S. On the other hand, (ii) since N is a separator, every ũ that

contains p (resp. q) such that u ∈ R must intersect d̃Y (resp. d̃X). Moreover, (iii) since

there are all edges between one bipartition class of N and dX , and the other bipartition

class of N and dY , the arc d̃X (resp. d̃Y) cannot intersect any ṽ that contains q (resp. p)

such that v ∈ N .

First, consider the case in which d̃X and d̃Y intersect, i.e., the graph H1 has no edges.

In such situation, we take the representation of H2, remove d̃X and d̃Y , and represent each

vertex v of D by a copy of d̃X or d̃Y , depending on to which bipartition class of H1 vertex

v belongs. By (ii), every w̃ such that w ∈ D intersects every ũ such that u ∈ R. By (iii)

every w̃ that contains p and such that w ∈ D cannot intersect any ṽ that contains q such

that v ∈ N . Analogously, every w̃ that contains q such that w ∈ D cannot intersect any

ṽ that contains p such that v ∈ N .

Therefore, we can assume that d̃X and d̃Y are disjoint. Now consider a representation

of H1. Note that in such a representation there exists a (closed) arc, a′′
N (resp. a′′

S), such

that p ∈ a′′
N (resp. q ∈ a′′

S) and a′′
N is contained in all arcs that contain p (resp. a′′

S is

contained in arcs containing q). We denote by a′′
W and a′′

E the two (open) arcs such that

{a′′
N , a′′

S, a′′
E, a′′

W } is a partition of the circle.

We claim that we can obtain a representation of H from the representations of H1 and

H2 by identifying the arcs a′
N ∪d̃X , a′

S ∪d̃Y , a′
W \(d̃X ∪d̃Y), a′

E \(d̃X ∪d̃Y), respectively, with

a′′
N , a′′

S, a′′
W , a′′

E (see Figure 5.2Figure 5.2). Note that the intersections between the arcs corresponding

to the vertices of N ∪R did not change, so we only need to argue that each w̃ that contains

p (resp. q) such that w ∈ D (a) intersects every ũ that contains q (resp. p) and u ∈ R,

and (b) is disjoint with each ṽ that contains q (resp. p) and v ∈ N .

Consider some u ∈ R and w ∈ D such that q ∈ ũ, p ∈ w̃. To see (a), note that w̃

contains a′′
N ∪ d̃X and by (ii) ũ is intersecting d̃X , so w̃ must intersect ũ. For (b) note that

by (i) ũ is contained in a′′
S ∪ dY , and by (iii) w̃ must be contained in the remaining part

of the cycle, they are not intersecting, and this concludes the proof.

Next, we generalize the notion of a decomposition for general target graphs. We define

the following three types of decompositions of a graph H (see Figure 5.3Figure 5.3). Note that

72

H1

q

p

H2
⇒

H

q

p

Figure 5.2: Assume that H is bipartite and has a decomposition (D, N, R) with factors
H1, H2, which are both complements of circular-arc graphs. In the representation of H2
(left, interior), arcs corresponding to sets {dX , dY }, N , and R are indicated respectively by
green, red, and gray color. Arcs a′′

W and a′′
E in the representation of H1, a′

W −(dX ∪dY) and
a′

E − (dX ∪dY) in the representation of H2 (left) and the result of identifying them (right)
are denoted by yellow. Intuitively, we can obtain a representation of H by “squeezing”
the non-trivial part of the representation of H1 in the yellow area.

unless stated explicitly, we do not insist that any of the defined sets is non-empty. The

high-level idea is to define decompositions of H so that they will correspond to bipartite

decompositions of H∗.

Definition 5.2.3 (F -decomposition). For a connected graph H, a partition of V (H)

into an ordered triple of sets (F, K, Z) is an F -decomposition if the following conditions

are satisfied (see Figure 5.3Figure 5.3, left).

(F1) K is non-empty and separates F and Z,

(F2) |F | ⩾ 2,

(F3) K induces a reflexive clique,

(F4) F is complete to K.

Definition 5.2.4 (BP -decomposition). For a connected graph H, a partition of V (H)

into an ordered five-tuple of sets (B, P, M, K, Z) is a BP -decomposition if the following

conditions are satisfied (see Figure 5.3Figure 5.3, middle).

(BP1) M ∪ K is non-empty, and there are no edges between (P ∪ B) and Z,

73

(BP2) |P | ⩾ 2 or |B| ⩾ 2,

(BP3) K ∪ P induces a reflexive clique and B is an independent set,

(BP4) M is complete to P ∪ K and B is complete to K,

(BP5) B is non-adjacent to M .

Definition 5.2.5 (BB-decomposition). For a connected graph H, a partition of V (H)

into an ordered six-tuple of sets (B1, B2, K, M1, M2, Z) is a BB-decomposition if the fol-

lowing conditions are satisfied (see Figure 5.3Figure 5.3, right).

(BB1) K ∪ M1 ∪ M2 is non-empty, and there are no edges between (B1 ∪ B2) and Z,

(BB2) |B1| ⩾ 2 or |B2| ⩾ 2,

(BB3) K induces a reflexive clique and each of B1, B2 is an independent set,

(BB4) K is complete to M1 ∪ M2 ∪ B1 ∪ B2, and M2 is complete to M1 ∪ B1, and M1 is

complete to B2,

(BB5) B1 is non-adjacent to M1 and B2 is non-adjacent to M2.

K

F

Z

M K

B P

Z

M1
K

M2

B1 B2

Z

Figure 5.3: A schematic view of an F -decomposition (left), a BP -decomposition (mid-
dle), and a BB-decomposition of H (right). Disks correspond to sets of vertices: white
ones depict independent sets, black ones depict reflexive cliques, and orange ones depict
arbitrary subgraphs. Similarly, thick black lines indicate that all possible edges between
two sets exist, and thin orange lines depict edges that might exist, but do not have to.
The lack of a line means that there are no edges between two sets.

Observe that a graph H can have more than one type of decomposition: for example, if

(B, P, ∅, K, Z) is a BP -decomposition of H, then (B∪P, K, Z) is an F -decomposition of H.

We say that a connected graph H is decomposable if it admits a Γ-decomposition, for some

74

Γ ∈ {F, BP, BB}, and undecomposable otherwise. Note that a bipartite decomposition is

a special case of a BB-decomposition (with K = ∅ and M1, M2 being independent sets).

A disconnected graph H is decomposable if and only if there is a connected component

H ′ of H that is decomposable, and to obtain a decomposition of H from a decomposition

δ of H ′, we simply add all the vertices of V (H) \ V (H ′) to the set Z (regardless of the

type of δ).

For each kind of decomposition, we define graphs H1, H2, as follows:

for an F -decomposition: H1 = H[F] and H2 is obtained from H by contracting F

to a vertex f . It has a loop if and only if F is not an independent set.

for a BP -decomposition: H1 = H[B∪P] and H2 is obtained from H by contracting

P and B respectively (if they are non-empty), to vertices p and b, such that p has a loop

and b does not. Also, pb ∈ E(H2) if and only if there is any edge between P and B in H.

for a BB-decomposition: H1 = H[B1 ∪ B2] and H2 is obtained from H by con-

tracting B1 and B2 respectively (if they are non-empty), to vertices b1 and b2 (without

loops). Also, b1b2 ∈ E(H2) if and only if there is any edge between B1 and B2 in H.

For a connected graph H, and its Γ-decomposition δ, where Γ ∈ {F, BP, BB},

we define the factorization of H with respect to δ to be the pair (H1, H2) and define

Factors(H, δ) = {H1, H2}. Note that if a graph admits a bipartite decomposition, which

is a special case of BB-decomposition, these notions coincide.

Note that the construction of H2 implies that if H is connected, so is H2. Also,

in a BP -decomposition, a BB-decomposition, and an F -decomposition when F is an

independent set or contains a vertex with a loop, the elements of Factors(H, δ) are always

induced subgraphs of H. Indeed, we can equivalently obtain H2 by removing certain

vertices from H. In the case of an F -decomposition when F contains at least one edge

and has only vertices without loops, H2 is not an induced subgraph of H. Then we can

equivalently define H2 as the graph obtained by removing from F all but two vertices

that are adjacent to each other, and then replacing them with a vertex with a loop.

Let us prove that the three types of decompositions defined above correspond to bi-

partite decompositions of the associated bipartite graph H∗. Here, for any W ⊆ V (H),

we define two subsets of V (H∗) as follows: W ′ := {x′ | x ∈ W} and W ′′ := {x′′ | x ∈ W}.

Note that a subset W ⊆ V (H) induces a reflexive clique in H if and only if W ′ ∪ W ′′

induces a biclique in H∗.

75

Lemma 5.2.6. Let H be a connected graph that admits a Γ-decomposition δ, for Γ ∈

{F, BP, BB} with factorization (H1, H2). Then H∗ is decomposable. Moreover, if H is a

non-bi-arc graph, then at least one of H1, H2 is a non-bi-arc graph.

Proof. If H is bipartite, then, by Theorem 5.0.1Theorem 5.0.1, H∗ consists of two isomorphic copies

of H. Since a bipartite decomposition is a special case of the BB-decomposition (with

K = ∅ and M1, M2 being independent sets), the theorem holds for bipartite graphs, as

H∗ contains a decomposable component.

Thus we assume that H is non-bipartite, and consider three cases, depending on the

type of a decomposition of H.

If H has an F -decomposition δ = (F, K, Z), define D, N, R as (see Figure 5.4Figure 5.4 a)):

D := F ′ ∪ F ′′, N := K ′ ∪ K ′′, R := Z ′ ∪ Z ′′.

The fact that (D, N, R) is a bipartite decomposition of H∗ follows directly from the

definition of a F -decomposition (recall Definition 5.2.3Definition 5.2.3): each property in Definition 5.2.1Definition 5.2.1

follows from the corresponding property in Definition 5.2.3Definition 5.2.3.

Now let (H1, H2) and ((H∗)1, (H∗)2) be factorizations of, respectively H and H∗ with

respect to the decompositions considered above. If H is non-bi-arc, then by Theorem 5.1.6Theorem 5.1.6,

H∗ is not the complement of a circular-arc graph. Then Lemma 5.2.2Lemma 5.2.2 implies that at least

one of (H∗)1, (H∗)2 is not the complement of a circular arc graph. However, note that

(H∗)1 = (H1)∗ and (H∗)2 = (H2)∗, hence again by Lemma 5.2.2Lemma 5.2.2, at least one of H1, H2 is

not a bi-arc graph.

If H has a BP -decomposition δ = (B, P, M, K, Z), then (D, N, R) is as follows (see

Figure 5.4Figure 5.4 b)):

D :=B′ ∪ P ′′,

N :=K ′ ∪ M ′ ∪ P ′ ∪ K ′′,

R :=Z ′ ∪ Z ′′ ∪ M ′′ ∪ B′′.

If H has a BB-decomposition δ = (B1, B2, K, M1, M2, Z), then we define (D, N, R) as

76

follows (see Figure 5.4Figure 5.4 c)):

D :=B′
1 ∪ B′′

2 ,

N :=K ′ ∪ M ′
1 ∪ K ′′ ∪ M ′′

2 ,

R :=Z ′ ∪ M ′
2 ∪ B′

2 ∪ Z ′′ ∪ M ′′
1 ∪ B′′

1 .

Again, it is straightforward to verify that in both cases δ1 = (D, N, R) is a bipartite

decomposition of H∗.

Let (H1, H2) and ((H∗)1, (H∗)2) be factorizations of, respectively H and H∗ with

respect to δ and δ1. Let (S1, S2) = (B, P) if δ1 is a BP -decomposition, and (S1, S2) =

(B1, B2) if δ1 is a BB-decomposition. Suppose that S1 ̸= ∅ and S2 ̸= ∅. Let s1 and s2 be,

respectively, vertices of H2, that were obtained by contracting S1 and S2. We note that

if s′
1 and s′′

2 are vertices of (H∗)2 that were obtained by contracting, respectively, S ′
1 and

S ′′
2 , then we can define a bipartite decomposition δ2 = (S ′′

1 ∪ S ′
2, N̂ , R̂) of (H∗)2, where

N̂ =


K ′′ ∪ M ′′ ∪ {p′′} ∪ K ′ if δ1 is a BP -decomposition,

K ′′ ∪ M ′′
1 ∪ K ′ ∪ M ′

2 if δ1 is a BB-decomposition.

and

R̂ =


Z ′′ ∪ Z ′ ∪ M ′ ∪ {b′} if δ1 is a BP -decomposition,

Z ′′ ∪ M ′′
2 ∪ Z ′ ∪ M ′

1 ∪ {b′
1, b′′

2} if δ1 is a BB-decomposition.

Denote by (((H∗)2)1, ((H∗)2)2) the factorization of (H∗)2 with respect to δ2.

Observe that ((H∗)2)1 = H∗[S ′′
1 ∪ S ′

2] = H∗[S ′
1 ∪ S ′′

2] = (H∗)1, and this is an induced

subgraph of (H1)∗ = (H[S1 ∪ S2])∗ = H∗[S ′
1 ∪ S ′′

1 ∪ S ′
2 ∪ S ′′

2]. If now s′′
1 and s′

2 are vertices

of ((H∗)2)2 that were obtained by contracting, respectively, S ′′
1 and S ′

2, then note that

{s′′
1, s′

2} ∪ N̂ ∪ R̂ is the set of vertices of ((H∗)2)2 and moreover, ((H∗)2)2 = (H2)∗.

Hence, by Theorem 5.1.6Theorem 5.1.6, if H is a non-bi-arc graph, then H∗ is not a comple-

ment of circular-arc graph, and Lemma 5.2.2Lemma 5.2.2 implies that either ((H∗)2)1 = (H∗)1 or

((H∗)2)2 = (H2)∗ is not a complement of circular-arc graph. Since the first one is an in-

duced subgraph of (H1)∗, either (H1)∗ or (H2)∗ is not a complement of circular-arc graph.

By Theorem 5.1.6Theorem 5.1.6, at least one of H1, H2 is a non-bi-arc graph.

77

The cases when either S1 or S2 is empty are analogous, the only difference is that

some of vertices of the second factors or each decomposition (e.g., s1 or s2) just do not

exist. This concludes the proof.

a) K

F

Z

K ′
F ′

Z ′
K ′′
F ′′

Z ′′

b)

M K

B P

Z

K ′
B′

M ′

P ′

Z ′

K ′′

B′′
M ′′

P ′′

Z ′′ c)

M1
K

M2

B1 B2

Z

K ′

B′
1

B′
2

M ′
1

M ′
2

Z ′

K ′′

B′′
1

B′′
2

M ′′
1

M ′′
2

Z ′′

Figure 5.4: Decompositions of a graph H (left) and their corresponding bipartite decom-
positions (D, N, R) of H∗ (right): a) an F -decomposition, b) a BP -decomposition and c)
a B-decomposition. Dashed lines mark the set N .

We can prove the converse statement, assuming that H is not a strong split graph. A

graph H is a strong split graph if its set of vertices can be partitioned into sets B and P

such that B is an independent set and P is a reflexive clique. We call such a pair (B, P)

a split partition of H.

Lemma 5.2.7. Let H be a connected non-bi-arc graph. If H is not a strong split graph

and H is undecomposable, then H∗ is undecomposable.

Proof. Similarly like in the previous proof, if H is bipartite, the statement holds by

Theorem 5.0.1Theorem 5.0.1, and the fact that a bipartite decomposition is a special case of the B-

decomposition. Hence we can assume that H is non-bipartite. In particular this means

that H∗ is connected.

Suppose for contradiction that (D, N, R) is a bipartite decomposition of H∗. Recall

that N ̸= ∅ and one bipartition class of D has at least two elements. We aim to show

that H has a Γ-decomposition for Γ ∈ {F, BP, BB}. We partition the vertices of H into

nine sets as follows (see Figure 5.5Figure 5.5):

78

VDD :={x | x′ ∈ D, x′′ ∈ D}, VND :={x | x′ ∈ N, x′′ ∈ D}, VRD :={x | x′ ∈ R, x′′ ∈ D},

VDN :={x | x′ ∈ D, x′′ ∈ N}, VNN :={x | x′ ∈ N, x′′ ∈ N}, VRN :={x | x′ ∈ R, x′′ ∈ N},

VDR :={x | x′ ∈ D, x′′ ∈ R}, VNR :={x | x′ ∈ N, x′′ ∈ R}, VRR :={x | x′ ∈ R, x′′ ∈ R}.

Clearly, from the definition of the bipartite decomposition it follows that some pairs of

these sets cannot be both non-empty (e.g. VDD and VRN , because V ′
DD must be complete

to V ′′
RN and in the same time V ′′

DD is non-adjacent to V ′
RN). Observe that VNR ∪VND ∪VNN

is complete to VND ∪ VRD ∪ VDD ∪ VDN ∪ VRN ∪ VNN and VDN ∪ VRN ∪ VNN is complete

to VDN ∪ VDR ∪ VDD ∪ VNR ∪ VND ∪ VNN . Also, VDR ∪ VDN ∪ VDD is non-adjacent to

VNR∪VDR∪VRR and VRD ∪VND ∪VDD is non-adjacent to VRN ∪VRD ∪VRR. In particular, it

implies that VND, VDN , and VNN must be reflexive cliques and VDR, VRD are independent

sets. Finally, at least one of the sets VDR ∪ VDN ∪ VDD and VRD ∪ VND ∪ VDD has at

least two vertices and at least one of the sets VNR ∪ VND ∪ VNN and VDN ∪ VRN ∪ VNN is

non-empty.

Case 1: VDD ̸= ∅. It implies that VNR, VRN = ∅. If VNN ̸= ∅, then it is straightforward

to observe that (VDD ∪ VDN ∪ VND ∪ VDR ∪ VRD, VNN , VRR) is an F -decomposition of H.

Thus assume that VNN = ∅ and observe it implies that VRR = ∅, as we assumed that H is

connected. Moreover, since VNR ∪ VRN ∪ VDN ∪ VND ∪ VNN ̸= ∅, at least one of VDN , VND

is non-empty. Assume that VDN ̸= ∅, as the other case is symmetric. Recall that this

means that VDR = ∅.

If VND ̸= ∅, then VRD = ∅ and (VDD ∪ VND, VDN , ∅) is an F -decomposition. So let

VND = ∅. If |VDD| ⩾ 2, then (VDD, VDN , VRD) is an F -decomposition. If |VRD| ⩾ 2 or

|VDN | ⩾ 2, then (VRD, VDN , VDD, ∅, ∅) is a BP -decomposition. So in the last case we have

|VDD| = |VDN | = 1 and |VRD| ⩽ 1. It is easy to verify that then H is a bi-arc graph

(or, equivalently, H∗ does not contain an induced cycle on at least 6 vertices or an edge

asteroid). This contradicts our assumption on H.

Case 2: VDD = ∅. We consider three subcases: either VDR, VRD ̸= ∅, or VDR = ∅

and VRD ̸= ∅ (the case VDR ̸= ∅ and VRD = ∅ is symmetric), or VDR, VRD = ∅. The

first case implies that VDN , VND = ∅, so we immediately obtain a BB-decomposition

(VDR, VRD, VNN , VNR, VRN , VRR).

79

In the second one we have VND = ∅. If VDN ̸= ∅, then VNR = ∅. If additionally

VRN ∪ VNN ̸= ∅, then there exists a BP -decomposition (VRD, VDN , VRN , VNN , VRR). On

the other hand, if VRN ∪ VNN = ∅, then VRR = ∅ by connectivity of H. Thus the only

non-empty sets are VDN and VRD, so H must be a strong split graph, a contradiction.

Finally, if VDN = ∅, then H admits a BB-decomposition (∅, VRD, VNN , VNR, VRN , VRR).

So let us assume that VDR, VRD = ∅. We consider further subcases: either VNR, VRN ̸=

∅, or VNR = ∅ and VRN ̸= ∅ (the other case, i.e., VNR ̸= ∅ and VRN = ∅, is symmetric), or

VNR, VRN = ∅. Note that if VNR, VRN ̸= ∅, then VDN , VND = ∅, so D = ∅, which is a con-

tradiction with (D, N, R) being a bipartite decomposition of H∗. If VNR = ∅ and VRN ̸= ∅,

then VND = ∅ and |VDN | ⩾ 2 and we have a BP -decomposition (∅, VDN , VRN , VNN , VRR).

Lastly, when VNR, VRN = ∅, then either |VDN | ⩾ 2 or |VND| ⩾ 2. By symmetry, we can as-

sume that the first case holds. Then, either (VDN , VND∪VNN , VRR) is an F -decomposition,

or VND ∪ VNN = ∅, then, by connectivity of H, VRR = ∅ and H is just a reflexive clique

induced by VDN . However, such a graph is a bi-arc graph, a contradiction.

We note that the assumption on H not being a split graph is essential, as it may

happen that a strong split graph H is undecomposable when H∗ admits a decomposition,

see Figure 5.6Figure 5.6 for an example.

Now, with a notion of a decomposition in hand, we can define a generalized set of

factors of H. Intuitively, such a set consists of two kinds of graphs, bi-arc graphs and

undecomposable graphs, that are obtained by recursively decomposing H, factors of H,

factors of factors of H, etc.

Formally, for a graph H we recursively construct a binary tree T as follows. We start

with a single node H, and as long as T contains a leaf node H ′ that is non-bi-arc and

admits a decomposition δ with factorization (H ′
1, H ′

2), we add H ′
1 and H ′

2 as the children of

H ′. Hence, all leaves of T are either bi-arc or undecomposable. We call T a factorization

tree of H. By FactorsT (H) we denote the set of leaves of T . If the tree T is clear from the

context, we omit the subscript and write Factors(H). Clearly, if H is undecomposable,

then Factors(H) = {H}.

As the last proof in this section we show that even if H ′ is not an induced subgraph

of H, the associated bipartite graph H ′∗ is still an induced subgraph of H∗.

Lemma 5.2.8. If H ′ ∈ FactorsT (H) for some T , then H ′∗ is an induced subgraph of H∗.

80

Proof. Recall that by the definitions of decompositions, H ′ was obtained from H by a

sequence of two types of operations:

(O1) removing some vertices or, equivalently, taking an induced subgraph (BP -, BB-,

and F -decomposition when the set F contains a loop or is independent),

(O2) removing some vertices and then contracting two adjacent vertices a, b, such that

N(a) \ {b} = N(b) \ {a} and none of a, b has a loop, to a vertex c with a loop;

vertices a and b are removed from the graph and the new vertex c becomes adjacent

to all vertices in N(a) \ {b} = N(b) \ {a} (F -decomposition when F has no loop

and contains at least one edge, see Figure 5.7Figure 5.7).

Observe that if only the first type of operation was applied, then H ′ is an induced

subgraph of H, which implies that H ′∗ is an induced subgraph of H∗. Let us analyze the

case when some operations of the second type were applied as well.

In this case H ′ might not be an induced subgraph of H, but each newly created vertex

c uniquely corresponds to two adjacent vertices, i.e., a, b. Moreover, when the operation

was applied, a and b had the same neighborhoods in the current graph, except of being

adjacent to each other. Note that both a and b are vertices of H: they do not have

loops, while we only add vertices with loops. Furthermore, when c is created, a and b are

removed from the graph, so each vertex is used in the operation of the second type at

most once.

Let us consider H ′∗. Note that the edge ab of H corresponds to two edges a′b′′ and a′′b′

in H∗. Moreover, we can map the vertex c′ to a′ and c′′ to b′′. Since N(a)\{b} = N(b)\{a},

when the operation was applied, the associated bipartite graph of the obtained graph

is indeed an induced subgraph of H∗, and the mapping mentioned above defines the

isomorphism from H ′∗ to a subgraph of H∗.

5.3 Incomparable sets

A set S ⊆ V (H) is sound if (i) S is contained in one connected component of H, and (ii)

if H is bipartite, then S is contained in one bipartition class of H. By i(H) we denote

the size of maximum sound incomparable set in H. We observe the following.

81

Observation 5.3.1. If H is a bipartite graph, which is not a complement of a circular-

arc graph, then i(H) ⩾ 3. In particular, each bipartition class of H contains at least 3

vertices.

Proof. From Theorem 5.1.6Theorem 5.1.6 it follows that H contains an obstruction, which is either an

induced C6, an induced C8, or an asteroidal subgraph. Observe that all vertices from one

bipartition class of C6 or C8 form an incomparable set of size at least 3. On the other

hand, note that in a special edge asteroid {u0v0, u1v1, uk+1vk+1} is an induced matching,

so their appropriate endvertices form the desired incomparable set.

We can now formally define the parameter i∗(H). For a bipartite graph H let

i∗(H) := max{i(H ′) : H ′ is an induced subgraph of H that is undecomposable, connected

and whose complement is not a circular-arc graph}

if H is not a complement of a circular arc graph, and i∗(H) = 1 otherwise. For a general

graph H, we define

i∗(H) := i∗(H∗).

Recall from Theorem 5.0.1Theorem 5.0.1 that if H is bipartite, then H∗ consists of two disjoint copies

of H, so clearly i∗(H) = i∗(H∗) and i∗ is well-defined for bipartite graphs. Moreover, note

that Theorem 5.1.6Theorem 5.1.6 implies that if H is a bi-arc graph, then i∗(H) = 1.

The following observation is straightforward.

Observation 5.3.2. Let H ′ be an induced subgraph of H. Then i∗(H ′) ⩽ i∗(H). □

Observation 5.3.2Observation 5.3.2 implies that a similar fact can be shown for the factors of H.

Observation 5.3.3. Let H be a graph and let H ′ ∈ FactorsT (H) for some T . Then

i∗(H ′) ⩽ i∗(H).

Proof. By the definition of i∗ and Observation 5.3.2Observation 5.3.2, i∗(H ′) = i∗(H ′∗) ⩽ i∗(H∗) = i∗(H).

Recall that if H is a strong split graph, the correspondence between undecomposability

of H and H∗ does not necessarily hold. Because of that, in some arguments, we need

to treat strong split graphs separately. For that, we summarize the important properties

these graphs in the following lemma.

82

Lemma 5.3.4. Let H be a connected, undecomposable, non-bi-arc, strong split graph with

partition (B, P). Then the following holds.

1. i∗(H) = i(H∗),

2. |B|, |P | ⩾ 3,

3. the bipartite graph H ′, obtained from H by removing all edges with both endvertices

in P (including loops), is connected, undecomposable, and not a complement of

circular-arc graph.

Proof. Let (B, P) be the partition of H. Since we always have i∗(H∗) ⩽ i(H∗) we only

need to show that i∗(H∗) ⩾ i(H∗).

Since H is non-bi-arc, P, B ̸= ∅, so in particular H is not bipartite (as it contains a

vertex with a loop). By Theorem 5.0.1Theorem 5.0.1, H∗ is connected. Moreover, by Theorem 5.1.6Theorem 5.1.6,

H∗ is not the complement of a circular-arc graph. Hence, by Observation 5.3.1Observation 5.3.1, each

bipartition class of H∗ contains at least three vertices, i.e., |B′ ∪ P ′′| = |B′′ ∪ P ′| ⩾ 3.

We observe that H∗[B′ ∪ P ′′] is isomorphic to H ′, so in particular, H ′ is an induced

subgraph of H∗. We claim that i∗(H∗) ⩾ i(H ′) = i(H∗).

First, we prove that H ′ is not the complement of circular-arc graph. Note that H∗

always admits a bipartite decomposition δ1 = (B′ ∪ P ′′, P ′, B′′). Let (H1, H2) be the

factorization of δ1, recall that H1 is isomorphic to H ′. Note that H2 is isomorphic to

H∗[B′′ ∪ P ′] plus two adjacent vertices dB′ , dP ′′ such that dP ′′ is additionally complete

to P ′. Hence, H2 can be further decomposed into δ2 = (B′′ ∪ P ′, {dP ′′}, {dB′}) with

factorization (Ĥ1, Ĥ2). Again, note that Ĥ1 and Ĥ2 are isomorphic, respectively, to H ′,

and a path P4 on 4 vertices. Clearly, P4 is the complement of a circular-arc graph, as P4

is a circular-arc graph and P4 = P4. If now H ′ is also the complement of a circular arc

graph, by Lemma 5.2.2Lemma 5.2.2 so is H2, and then so is H∗. However, since H is non-bi-arc, this is

a contradiction with Theorem 5.1.6Theorem 5.1.6. Hence, H ′ is not a complement of circular-arc graph.

In particular, by Observation 5.3.1Observation 5.3.1, each bipartition class of H ′, i.e., B or P , contains at

least three vertices (that proves the second item).

Now we observe that H ′ must be connected. Assume otherwise, and note that since H ′

is bipartite and, by the previous paragraph, not the complement of a circular-arc graph,

by Theorem 5.1.6Theorem 5.1.6, there is a connected component H ′′ of H ′ that contains an obstruction.

Again, by Observation 5.3.1Observation 5.3.1, each bipartition class of H ′′ contains at least three vertices.

83

Since H is connected, H ′′ contains some p ∈ P . If |B − V (H ′′)| ⩾ 2 or |P − V (H ′′)| ⩾ 2,

we note that (B −V (H ′′), P −V (H ′′), P ∩V (H ′′), ∅, V (H ′′)∩B) is a BP -decomposition of

H. Otherwise, (B ∩ V (H ′′), P ∩ V (H ′′), P \ V (H ′′), ∅, B \ V (H ′′)) is a BP -decomposition

of H. In both cases we reach a contradiction with H being undecomposable.

Summarizing, H ′ is a connected, induced subgraph of H∗ whose complement is not a

circular-arc graph.

We prove the equality i(H ′) = i(H∗). To see that i(H ′) ⩾ i(H∗) consider a sound

incomparable set S in H∗. Without loss of generality, S ⊆ B′ ∪ P ′. However, S cannot

contain b′ ∈ B′ and p′ ∈ P ′, since NH∗(b′) ⊆ NH∗(p′). Hence, each incomparable set

in H∗ that is contained in one bipartition class, corresponds to a sound incomparable

set in H ′. This means that i(H ′) ⩾ i(H∗), thus (as the converse inequality follows from

Observation 5.3.2Observation 5.3.2) i(H ′) = i(H∗).

To show that i∗(H∗) ⩾ i(H ′), it is enough to prove that H ′ is a connected induced

undecomposable subgraph of H∗, and not the complement of a circular-arc graph. It

remains to show that H ′ is undecomposable. Assume otherwise and let (D, N, R) be a

bipartite decomposition of H ′. We observe that (B ∩ D, P ∩ D, (B ∩ N) ∪ (P ∩ R), P ∩

N, B ∩ R) is a BP -decomposition of H, a contradiction. This concludes the proof.

84

V ′
RNV ′

RD

V ′
RR

V ′′
NRV ′′

DR

V ′′
RR

V ′
NNV ′

ND

V ′
NR

V ′′
NNV ′′

DN

V ′′
RN

V ′
DNV ′

DD

V ′
DR

V ′′
NDV ′′

DD

V ′′
RD

D

N

R

Figure 5.5: Schematic definition of sets in the proof of Lemma 5.2.7Lemma 5.2.7. E.g. VDN is the set
of those x ∈ V (G), for which x′ ∈ D and x′′ ∈ N . Author: Marta Piecyk.

D

N

R

Figure 5.6: A strong split undecomposable graph H (left) and the graph H∗ with a
decomposition (right).

Z

K

a b

Z

K

c

Z ′

K ′

b′
a′

Z ′′

K ′′

b′′
a′′

Z ′

K ′

c′

Z ′′

K ′′

c′′

Figure 5.7: Operation (O2) applied to vertices a, b in H (left) and the corresponding
operation applied to vertices a′, a′′, b′, b′′ in H∗ (right). Author: Paweł Rzążewski.

85

Chapter 6

The list homomorphism problem

parameterized by treewidth

In this chapter we provide the crucial tools to analyze the algorithmic aspects of the list

homomorphism problem, and show how these tools can be used to derive Theorem 1.3.3Theorem 1.3.3.

First, we are going to show that the key to understand the complexity of the list

homomorphism problem is the case when the target H is undecomposable (with respect

to the decompositions defined previous chapter). Intuitively, we show that if we are able

to decide whether (G, L) → H for any pair (G, L) and any undecomposable graph H,

then we are able to solve the problem for every other graph H in roughly the same time.

Next, we show an analogue of Lemma 3.2.7Lemma 3.2.7 in the list regime and prove that we are

able to simulate certain relations defined on V (H), provided that H is undecomposable.

6.1 Decomposition lemmas

The main technical contribution of this section is the so-called decomposition theorem

(Theorem 6.1.6Theorem 6.1.6). Intuitively speaking, for a target graph H, it asserts that if we have an

algorithm to solve the list homomorphism problem for every H ′ that is either an induced

subgraph or a factor of H, then we can solve the problem for H in roughly the same time.

We are going to show that the lemma holds even if we assume that the graph H is not

fixed, but given as part of the input. Formally, we consider the LHom problem, that takes

as an instance a triple (G, H, L) such that G and H are graphs, and L : V (G) → 2V (H),

and we ask whether (G, L) → H.

86

First, we show that we can effectively compute whether a given graph H is undecom-

posable. For that, we need the following structural lemma.

Lemma 6.1.1. Let H be a connected, bipartite undecomposable graph with bipartition

classes X, Y , let {s, v} ∈ X be incomparable, and let t ∈ X. Then there exist a vertex

q ∈ X and two pairs of walks:

1. P , P ′ : s → t and Q, Q′ : v → q, or

2. P , P ′ : s → q and Q, Q′ : v → t,

such that P avoids Q and Q′ avoids P ′. Moreover, if t is incomparable with at least one

of s, v then q = v in the first case and q = s in the other.

Finally, given a bipartite graph H and s, v, t ∈ X, in time polynomial in |V (H)| we

can either find the desired walks or a decomposition of H.

Since the proof of Lemma 6.1.1Lemma 6.1.1 is technically involved, we postpone its proof to Section

6.3. For now, we assume that it holds, and show the following.

Theorem 6.1.2. For a connected, non-bi-arc graph H, in time polynomial in |V (H)| we

can either find a decomposition of H, or correctly conclude that H is undecomposable.

Proof. We consider two cases, depending on whether H is a strong split graph or not.

Clearly, strong split graphs can be recognized in time polynomial in |V (H)|.

Hence, assume first that H is a strong split graph with partition (B, P). Lemma 5.3.4Lemma 5.3.4

asserts that |B|, |P | ⩾ 3. Let H ′ be the graph defined as in Lemma 5.3.4Lemma 5.3.4, recall by the

same lemma H ′ is not the complement of a circular-arc graph. Consider the following

sufficient conditions for H to be decomposable.

(i) H ′ is disconnected. Then Lemma 5.3.4Lemma 5.3.4 implies that H is decomposable.

(ii) There are two vertices v1, v2 ∈ B such that N(v1) = N(v2). Then ({v1, v2}, N(v1, v2),

V (H) \ N [v1, v2]) is an F -decomposition of H.

We claim the following.

Claim 6.1.2.1. Graph H is undecomposable if and only if H ′ is undecomposable, and

(i)-(ii) does not hold.

87

Proof of Claim. The forward implication follows already from Lemma 5.3.4Lemma 5.3.4 and the

above analysis. Hence assume that H ′ is undecomposable and (i),(ii) do not hold, but H

is decomposable.

• If H has a BB-decomposition (B1, B2, K, M1, M2, Z), then either there is an edge

between B1 and B2 (and thus in B), a contradiction, or two vertices in B ∩ B1 or

B ∩ B2 that satisfy (ii), also a contradiction.

• If H has a BP -decomposition (B̂, P̂ , M̂ , K̂, Ẑ), then (B̂∪P̂ , (M̂∩B)∪K̂, Ẑ∪(M̂∩P))

is a bipartite decomposition of H ′, a contradiction.

• If H has an F -decomposition (F, K, Z), and |P ∩F | ⩾ 2 or |B∩F | ⩾ 2 then (F, K, Z)

is also a bipartite decomposition of H ′ (with bipartition classes B and P , but note

that K ∩ B = ∅). Hence, as |F | ⩾ 2, F consists of precisely one loopless vertex b,

and one vertex p with loop. Note that in this case we have Z ⊆ B, as otherwise

p ∈ F has a neighbor in Z. If bp /∈ E(H), then H ′ is not connected, as p is isolated,

thus (i) holds, a contradiction. Otherwise bp ∈ E(H) and (K ∪ Z ∪ {p}, {b}, ∅) is a

bipartite decomposition of H ′.

That concludes the proof of claim. ⌟

Hence, after checking (i)-(ii) and constructing H ′ (both can be done in polynomial

time), it is enough to check whether H ′ admits a bipartite decomposition.

On the other hand, if H is not a strong split graph, by Lemma 5.2.6Lemma 5.2.6 and Lemma 5.2.7Lemma 5.2.7,

it is enough to check whether H∗ admits a bipartite decomposition. Hence, to prove the

lemma in both cases, it is sufficient to prove the following statement:

⋆ For a bipartite graph H that is not a complement of circular-arc graph, in time

polynomial in |V (H)| we can either find a decomposition of H, or correctly conclude

that H is undecomposable.

Let us then assume that H is bipartite, with bipartition classes X and Y . Consider

the following three-phase algorithm. If any of the calls results in finding a bipartite

decomposition of H, we return it and terminate the execution of the algorithm. Otherwise,

we return that H is undecomposable.

88

1. For every triple of vertices s, v, t in one bipartition class, such that s and v are

incomparable, apply the algorithm from Lemma 6.1.1Lemma 6.1.1, in order to find the walks or

a decomposition of H.

2. For every vertex v, let N ′
v be the set of vertices with exactly the same neighborhood

as v. Verify whether (V (H) \ N ′
v, N ′

v, ∅) is a bipartite decomposition of H.

3. For every x ∈ X and every y ∈ Y , let Xx (resp. Yy) be the set of vertices of X (resp.

Y), whose neighborhood is contained in the neighborhood of x (resp. y). Verify

whether one of triples (Xx ∪Yy, N(Xx ∪Yy), V (H)\N [Xx ∪Yy]), (Xx, N(Xx), V (H)\

N [Xx]), or (Yy, N(Yy), V (H) \ N [Yy]) is a bipartite decomposition of H.

Clearly the algorithm terminates after a polynomial number of steps: in each phase we

iterate over a polynomial number of tuples of vertices, Lemma 6.1.1Lemma 6.1.1 yields a polynomial-

time algorithm for finding a decomposition, and in polynomial time we can verify whether

a given triple is a bipartite decomposition of H. Furthermore, it never finds a decomposi-

tion of an undecomposable graph. So let us assume that H has some decomposition, say

(D, N, R), but our algorithm fails to find any decomposition.

We consider three cases, corresponding to the three stages of the algorithm.

Case 1. First, suppose that for some bipartition class of H, say X, the set D ∩ X

contains two incomparable vertices s and v and there exists t ∈ (N ∪ R) ∩ X. Note

that the triple s, v, t is considered in the first stage of the algorithm. Since the algorithm

fails to report a decomposition of H, calling Lemma 6.1.1Lemma 6.1.1 yields the walks given in the

statement of the lemma. By the symmetry of s and v, we can assume that we obtain

walks P ′ : s → t and Q′ : v → q, where q is some vertex in X, and P ′ avoids Q′. Let

us enumerate P ′ = (p1, p2, . . . , pℓ) and Q′ = (q1, q2, . . . , qℓ). Observe that for odd i we

have pi, qi ∈ X, and for even i we have pi, qi ∈ Y . Let i be the smallest index such that

{p1, p2, . . . , pi} ⊆ D and pi+1 ∈ N ; it is well defined, as p1 = s ∈ D, pℓ = t ∈ N ∪ R,

and N separates D and R. If qi ∈ D, then qipi+1 ∈ E(H), which contradicts Q′ avoiding

P ′. So let j < i be the minimum index, such that {q1, q2 . . . , qj} ⊆ D and qj+1 ∈ N ;

again, it is well defined, as q1 = v ∈ D and qi ∈ N ∪ R. Now observe that qj+1 ∈ N

and j + 2 ⩽ i + 1, so pj+2 ∈ D ∪ N . This implies that qj+1pj+2 ∈ E(H), a contradiction.

Summing up, if the first case applies, then the algorithm finds a decomposition of H.

Case 2. Now suppose that for some bipartition class of H, say X, it holds that

89

(N ∪ R) ∩ X = ∅. This means that R ∩ Y = ∅, as H is connected. Let v be any vertex

in N ∩ Y , it exists, as N ̸= ∅. Observe that N(v) = D ∩ X = X. By Observation 5.3.1Observation 5.3.1,

|D ∩ X| ⩾ 3 Let N ′
v ⊆ Y be the set of vertices with exactly the same neighborhood as v.

It is straightforward to verify that (V (H) \ N ′
v, N ′

v, ∅) is a decomposition of H, and it is

found in the second stage of the algorithm. (We point out that this decomposition is not

necessarily equal to (D, N, R), as some vertices of N ′
v might be in D.)

Case 3. Finally, suppose that none of the cases above applies. In particular, every

pair of vertices in D ∩ X (resp. D ∩ Y) is comparable, as otherwise we are in Case 1. If

D ∩ X ̸= ∅, we define x to be a vertex of D ∩ X whose neighborhood is maximal, i.e., for

each x′ ∈ D ∩ X it holds that N(x′) ⊆ N(x). Otherwise x is an arbitrary vertex from X,

note that it exists since we are not in Case 2 and thus (N ∪ R) ∩ X ̸= ∅. Similarly, let

y ∈ D ∩ Y be a vertex with maximal neighborhood among all vertices from D ∩ Y , or an

arbitrary vertex from Y , if D ∩ Y = ∅. Again, it is straightforward to verify that one of

the triples considered for x, y in the third stage is a decomposition of H.

The remaining part of this section consists of a series of technical lemmas, which,

combined together, give us the mentioned Decomposition Lemma. Let us intuitively

describe these steps. First, in Lemma 6.1.4Lemma 6.1.4 we show that it is enough to focus on the

instances that are reduced, i.e., obtained from a general instance by applying some simple

preprocessing steps. Second, in Lemma 6.1.5Lemma 6.1.5, we prove that if (H1, H2) is a factorization

of H with respect to some decomposition δ, and we are able to solve LHom for the

instances (G′, H ′, L′) such that H ∈ {H1, H2}, then we can compute the answer also for

the instances where H ′ = H. Finally, Theorem 6.1.6Theorem 6.1.6 states that if we can solve LHom

for the reduced instances (G′, H ′, L′) such that H ′ ∈ FactorsT (H) for some T , then we

are able to solve also the case when H ′ = H.

We formally introduce the notion of a reduced instance.

Definition 6.1.3. An instance (G, H, L) of LHom is reduced if:

(1) for each v ∈ V (G), the set L(v) is sound and incomparable, and

(2) for each v ∈ V (G) the set L(v) has at least two elements, and

(3) for each a ∈ V (H) there exists v ∈ V (G) such that a ∈ L(v), and

(4) the graph H is connected.

90

For an instance (G, H, L) let us define its measure as

||(G, H, L)|| :=
∑

v∈V (G)
(|L(v)| − 1).

We stress out that formally the measure of an instance (G, H, L) does not depend on the

graph H.

Observe that we always have ||(G, H, L)|| ⩽ |V (G)| · |V (H)|. On the other hand,

if the instance is reduced, every v ∈ V (G) contributes to ||(G, H, L)|| by at least one,

so ||(G, H, L)|| ⩾ |V (G)|. Moreover, since each vertex of H appears on some list,

||(G, H, L)|| + |V (G)| = ∑
v∈V (G)(|L(v)| − 1) + |V (G)| ⩾ |V (H)|, so ||(G, H, L)|| ⩾

|V (H)|/2. Combining the two inequalities, we get that if (G, H, L) is reduced, then

||(G, H, L)|| ⩾ 1
3(|V (G)| + |V (H)|).

For two instances I = (G, H, L) and I ′ = (G′, H ′, L′) of LHom, we say that I ′ is

a subinstance of I if G′ is an induced subgraph of G and (here we use notation from

Definition 5.2.3Definition 5.2.3, Definition 5.2.4Definition 5.2.4 and Definition 5.2.5Definition 5.2.5):

• for every v ∈ V (G′) we have L′(v) ⊆ L(v), or

• (this case applies only if there is a Γ-decomposition of H with factorization (H1, H2))

for every v ∈ V (G′) we have either L′(v) ⊆ L(v) or

– if Γ ∈ {F, BP}: if L(v) ∩ S ̸= ∅ for S ∈ {F, B, P}, then L′(v) ⊆ L(v) \ S ∪ {s}

for the corresponding s ∈ {f, b, p} (here s ∈ V (H2) is obtained by contracting

the set S to a single vertex, as in the definition of H2),

– if Γ = BB: if L(v) ∩ (B1 ∪ B2) ̸= ∅, then L′(v) ⊆ L(v) \ (B1 ∪ B2) ∪ B′, where

B′ = {b1} (resp. B′ = {b2}) if L(v) ∩ B2 = ∅ (resp. L(v) ∩ B1 = ∅) and

B′ = {b1, b2} if L(v) ∩ B1, L(v) ∩ B2 ̸= ∅.

The following lemma shows that we can restrict our attention to reduced instances.

Lemma 6.1.4. Let I = (G, H, L) be an instance of LHom. Suppose we have an algorithm

A that solves every reduced subinstance of I. Then there exists a (possibly empty) family I

of reduced subinstances of I such that ∑I′∈I ||I ′|| ⩽ ||I|| and that we can solve I by calling

the algorithm A on instances from I. All the additional computations are polynomial in

|V (G)| · |V (H)|.

91

Proof. First note that if I is reduced, then we can solve it just by calling A on I. Fur-

thermore, if for some v ∈ V (G) we have L(v) = ∅, then we are dealing with a trivial

no-instance. So from now on assume that I is not reduced and each list is non-empty.

We will prove the statement by the induction on µ(I) := |V (G)| + |V (H)| + ||I|| =∑
v∈V (G) |L(v)| + |V (H)|.

As a base case, consider µ(I) ⩽ |V (G)| + |V (H)|. Since every list is non-empty, we

have that µ(I) = |V (G)| + |V (H)| and each list has exactly one element. Then in time

polynomial in |V (G)| · |V (H)| we can solve I by checking whether the unique function

from V (G) to V (H) that respects lists L is a homomorphism.

Now suppose that the lemma holds for all instances I ′ which are either reduced or

satisfy µ(I ′) < µ(I). There are five possible reasons why I is not reduced, as indicated by

cases (a)–(e) below. In cases (a)–(c) we will construct an equivalent subistance I ′ with

µ(I ′) < µ(I), which can be solved by the inductive assumption. Cases (d) and (e) are

slightly more complicated.

(a) If for some v ∈ V (G) the list L(v) is not incomparable, i.e., contains two vertices a, b

such that NH(a) ⊆ NH(b), we consider I ′ := (G, H, L′), where L′ is obtained from L

by removing a from L(v). To see that (G, H, L) and (G, H, L′) are equivalent, note

that in any homomorphism f : (G, L′) → H with f(v) = a we can always recolor v to

the color b. Finally, observe that µ(I ′) = µ(I) − 1.

(b) If for some v ∈ V (G) and a ∈ V (H) we have L(v) = {a}, we consider I ′ := (G −

v, H, L′), where L′ is obtained from L by removing all non-neighbors of a from the

lists of neighbors of v. Clearly, µ(I ′) ⩽ µ(I) − 1.

(c) If some a ∈ V (H) does not appear in any list L, we consider I ′ := (G, H − a, L).

Clearly, µ(I ′) ⩽ µ(I) − 1.

(d) If H is disconnected, denote by G1, . . . , Gp and H(1), . . . , H(q), respectively, the con-

nected components of G and of H. For j ∈ [q], by Lj denote the lists L re-

stricted to the vertices of H(j). For every i ∈ [p] we define the set of instances

Ii = {(Gi, H(j), Lj) | j ∈ [q]}. As we always have |V (H(j))| < |V (H)|, the instances

in Ii can be solved by the inductive assumption. Clearly, (G, H, L) is a yes-instance

if and only if every (Gi, H, L) is a yes-instance, and we observe that (Gi, H, L) is a

yes-instance if and only if Ii contains a yes-instance. Hence, it is enough to solve every

92

instance that belongs to I = ⋃
i∈[p] Ii. It is clear to observe that their total measure is

at most ||I||.

(e) If for some v ∈ V (G) the list L(v) is not sound, then either case (d) holds, or H

is bipartite and L(v) contains vertices from different bipartition class of H. Thus

assume the latter holds. Denote these classes by X and Y . Clearly, if G is not

bipartite, (G, H, L) is a no-instance. Otherwise, denote by G1, . . . , Gp the connected

components of G. Fix i ∈ [p] let Xi, Yi be the bipartition classes of Gi. Define

Ii = {(Gi, H, L1), (Gi, H, L2)}, where for every u ∈ Xi we have L1(u) = L(u) ∩ X

and L2(u) = L(u) ∩ Y , and for every u ∈ Yi we have L1(u) = L(u) ∩ Y and L2(u) =

L(u) ∩ X. The instances in Ii can be solved by the inductive assumption. Clearly,

(G, H, L) is a yes-instance if and only if every (Gi, H, L) is a yes-instance, and we

observe that (Gi, H, L) is a yes-instance if and only if Ii contains a yes-instance.

For a family F of graphs, by Ind(F) we denote the class of graphs that consists of all

connected induced subgraphs of elements of F .

The following lemma describes the crucial step of the proof of Theorem 6.1.6Theorem 6.1.6.

Lemma 6.1.5 (Decomposition Lemma). Let I = (G, H, L) be a reduced instance of

LHom. Suppose that H has a Γ-decomposition δ for Γ ∈ {F, BB, BP} with factorization

(H1, H2). Suppose that we have an algorithm A that solves every reduced subinstance

(G′, H ′, L′) of I such that H ′ ∈ Ind({H1, H2}). Then we can solve (G, H, L) by calling the

algorithm A on a family I of such reduced subinstances of I such that ∑I′∈I ||I ′|| ⩽ ||I||.

All the additional computations are polynomial in ||I||.

Proof. The idea of the proof is simple: we aim to construct an instance (G, H2, L2) of

LHom, that is a subinstance of (G, H, L) equivalent to (G, H, L), and then solve it, using

the algorithm A, by Lemma 6.1.4Lemma 6.1.4. First, we consider the subgraph of G induced by the

vertices whose lists intersect V (H1). For each connected component of this subgraph we

compute whether it can be mapped to H1. Then, we define L2 in a way that reflects the

answer: if a component can be mapped to H1, we replace vertices from V (H1) on its lists

L by V (H2)\V (H), otherwise we delete vertices of V (H1) from the lists. The actual proof

is technically involved because the arguments on correctness and running time of a such

procedure differ depending on the type of decomposition; in particular, if Γ ∈ {BP, BB},

there is more than one way how vertices of H1 interact with the remaining vertices of H.

93

For a homomorphism h : (G, L) → H we define a H1-component for h to be a maximal

connected induced subgraph G′ of G such that h(V (G′)) ⊆ V (H1). Note that if Γ = BB,

then each H1-component must be bipartite.

We start with partitioning the vertex set of G according to the function L. The par-

tition depends on the type of decomposition. We use the notation from Definition 5.2.3Definition 5.2.3,

Definition 5.2.4Definition 5.2.4, and Definition 5.2.5Definition 5.2.5.
If Γ = F , then we partition V (G) into X1 and X2, so that:

• for every x1 ∈ X1, we have that L(x1) ⊆ F ∪ Z and L(x1) ∩ F ̸= ∅,

• for every x2 ∈ X2, we have that L(x2) ⊆ K ∪ Z.

Observe that this is indeed a partition, as every list is an incomparable set and thus

L(x) ∩ F ̸= ∅ implies L(x) ∩ K = ∅.
If Γ = BP , we partition the vertices of G into three sets X1, X2, X3, so that

• for every x1 ∈ X1, we have L(x1) ⊆ B ∪ Z and L(x1) ∩ B ̸= ∅,

• for every x2 ∈ X2, we have L(x2) ⊆ M ∪ P ∪ Z and L(x2) ∩ P ̸= ∅,

• for every x3 ∈ X3, we have L(x3) ⊆ M ∪ K ∪ Z.

We claim that X1, X2, X3 form a partition of V (G). Since every list is an incomparable

set, if there is a vertex from B in some L(x), then no vertex from P ∪ K ∪ M can be in

L(x). Similarly, if there is a vertex from P in L(x), then no vertex from K can be in L(x).
If Γ = BB, we partition the vertex set of G into four sets X1, X2, X3, X4 so that:

• for every x1 ∈ X1, we have L(x1) ⊆ B1 ∪B2 ∪Z, L(x1)∩B1 ̸= ∅ and L(x1)∩B2 ̸= ∅,

• for every x2 ∈ X2, we have L(x2) ⊆ B1 ∪ M2 ∪ Z and L(x2) ∩ B1 ̸= ∅,

• for every x3 ∈ X3, we have L(x3) ⊆ B2 ∪ M1 ∪ Z and L(x3) ∩ B2 ̸= ∅,

• for every x4 ∈ X4, we have L(x4) ⊆ M1 ∪ M2 ∪ K ∪ Z.

Again, if a vertex from B1 is in some list L(x), then no vertex of M1 ∪ K can be in

L(x), and if a vertex from B2 is in L(x), then no vertex from M2 ∪ K can be in L(x).

Forcing edges and family C. Now let us define a special type of edges in G, called

the forcing edges. The set of forcing edges will be denoted by Ẽ and its definition again

depends on the type of the decomposition.

94

For Γ = F , the set Ẽ is the set with both endvertices in X1. For Γ = BP , we define

Ẽ to be the set of edges that are either contained in X1 or are between X1 and X2. If

Γ = BB, we define Ẽ to contain edges inside X1, between X1 and X2 ∪ X3, and between

X2 and X3.

The following claim will be crucial in our algorithm.

Claim 6.1.5.1. Let xy ∈ Ẽ and let h : (G, L) → H. The following holds:

(1) if Γ ∈ {F, BP}, then h(x) ∈ V (H1) if and only if h(y) ∈ V (H1),

(2) if Γ = BB and:

(a) x, y ∈ X1, then h(x) ∈ B1 if and only if h(y) ∈ B2,

(b) x ∈ X1, y ∈ X2, then h(x) ∈ B2 if and only if h(y) ∈ B1,

(c) x ∈ X1, y ∈ X3, then h(x) ∈ B1 if and only if h(y) ∈ B2,

(d) x ∈ X2, y ∈ X3, then h(x) ∈ B1 if and only if h(y) ∈ B2.

Proof of Claim. If Γ = F , the claim is immediate, as K is a separator in H. For Γ = BP ,

the claim follows from the fact that there are no edges between B and B ∪ Z, and no

edges between P and Z.

Finally, if Γ = BB, there are three possible cases. If x, y ∈ X1, we have L(x), L(y) ⊆

B1 ∪ B2 ∪ Z, so indeed the claim follows. If x ∈ X1, y ∈ X2 (and, by symmetry, if x ∈ X1,

y ∈ X3) we have L(x) ⊆ B1 ∪ B2 ∪ Z and L(y) ⊆ B1 ∪ M2 ∪ Z and the claim follows by

the fact that B2 is non-adjacent to M2 ∪ Z and B1 is non-adjacent to B1 ∪ Z. Finally, if

x ∈ X2, y ∈ X3, we have L(x) ⊆ B1 ∪ M2 ∪ Z and L(y) ⊆ B2 ∪ M1 ∪ Z and the claim

follows from the fact that B1 is non-adjacent to M1 ∪Z and B2 is non-adjacent to M2 ∪Z.

This completes the proof of the claim. ⌟

Now we define a family C that will consists of pairs (C, P), where C is an induced

subgraph of G, and P is an ordered partition of V (C) into at most two sets. We say that

(C, P) ∈ C contains a vertex x ∈ V (G) or x belongs to (C, P) if x ∈ V (C).

If Γ = F , then we add to C each pair (G[V (C)], (V (C))) such that C is a connected

component of (G[X1], Ẽ). Similarly, if Γ = BP , we add to C each pair (G[V (C)], (V (C)))

such that C is a connected component of (G[X1 ∪ X2], Ẽ). Clearly, each vertex of G

belongs to at most one element of C.

95

If Γ = BB, the elements of C will be generated by exhaustive application of rules in

Claim 6.1.5.1Claim 6.1.5.1. For every x ∈ ⋃
i∈[3] Xi and every j ∈ {1, 2} we attempt to define a graph

Cx,j and a partition P = (V1, V2) of V (Cx,j). We initialize V (Cx,j) := {x} and Vj := {x}.

Then, for each xy ∈ Ẽ, such that x ∈ V (C) and y /∈ V (C), we proceed as follows.

(a) If x, y ∈ X1 and x ∈ V1, then add y to V2.

If x, y ∈ X1 and x ∈ V2, then add y to V1.

(b) If x ∈ X1, y ∈ X2 and x ∈ V2, then add y to V1.

If x ∈ X2, y ∈ X1 and x ∈ V1, then add y to V2.

(c) If x ∈ X1, y ∈ X3 and x ∈ V1, then add y to V2.

If x ∈ X3, y ∈ X1 and x ∈ V2, then add y to V1.

(d) If x ∈ X2, y ∈ X3 and x ∈ V1, then add y to V2.

If x ∈ X3, y ∈ X2 and x ∈ V2, then add y to V1.

If at any point of the construction we introduce to V1 (V2, resp.) a pair of adjacent

vertices, we discard the current run. Otherwise, if none of the above rules can be applied

anymore, we obtain Cx,j = G[V1 ∪ V2], and add (Cx,j, (V1, V2)) to C. We stress out that C

is a set, not a multiset. Because of that, since the above construction is exhaustive, each

vertex y ∈ V (G) belongs to at most two elements (C, (V1, V2)) of C: once as a member of

V1 and once as a member of V2.

Recall that by Claim 6.1.5.1Claim 6.1.5.1, if Γ ∈ {F, BP}, for every list homomorphism h :

(G, L) → H, either all vertices from C are mapped to V (H1), or no vertex from C is

mapped to V (H1).

The following observation encapsulates the main properties of C.

Claim 6.1.5.2. For every (C, P) ∈ C, the graph C is an induced subgraph of G.

For Γ ∈ {F, BP}:

(1) Each vertex x ∈ V (G) belongs to at most one element of C.

(2) For each (C, (V (C))) ∈ C and xy ∈ Ẽ, we have x ∈ V (C) if and only if y ∈ V (C).

(3) For each h : (G, L) → H, and every H1-component C for h we have (C, (V (C))) ∈ C.

For Γ = BB:

96

(1) Each vertex x ∈ V (G) belongs to at most two elements (C, (V1, V2)) of C, once as an

element of V1 and once as an element of V2.

(2) For every (C, (V1, V2)) ∈ C and xy ∈ Ẽ such that x ∈ X1 ∪ X2, y ∈ X1 ∪ X3, we have

x ∈ V1 if and only if y ∈ V2.

(3) For every h : (G, L) → H, and for every BB-component C for h we have (C, (V1, V2)) ∈

C, where Vj = {v ∈ V (C) | h(v) ∈ Bj} for j ∈ {1, 2}.

We define mΓ as mF = mBP = 1, and mBB = 2. Intuitively, mΓ is the maximum

possible number of elements of C that contain a fixed vertex x of V (G), or, equivalently

the number of sets in P for each (C, P) ∈ C.

Now we define a set I of subinstances of I that will be used to construct the lists L2.

Claim 6.1.5.3. In time polynomial in ||I|| we can construct a family Î = {IC : C ∈ C}

of subinstances of I, such that:

1. for every C = (C, P) ∈ C, the instance IC is (C, H1, LC), where

(a) if Γ ∈ {F, BP}, then for every x ∈ V (C) we have LC(x) = V (H1) ∩ L(x),

(b) if Γ = BB and P = (V1, V2), then for j ∈ {1, 2} and every x ∈ Vj we have

LC(x) = Bj ∩ V (H1) ∩ L(x);

2. it holds that

∑
I′∈̂I

||I ′|| ⩽
∑

x∈V (G)
(|L(x) ∩ V (H1)| − mΓ).

Proof of Claim. First, consider Γ ∈ {F, BP}. We construct Î as follows. For each

C = (C, (V (C))) ∈ C and x ∈ V (C) we define LC(x) = L(x) ∩ V (H1). By Claim 6.1.5.2Claim 6.1.5.2,

each vertex x ∈ V (G) belongs to at most one instance in Î. Hence

∑
(C,H1,LC)∈̂I

∑
x∈V (C)

(|LC(x)| − 1) ⩽
∑

x∈V (G)
(|L(x) ∩ V (H1)| − 1).

If Γ = BB, for each C = (C, (V1, V2)) ∈ C we define

LC(x) =


L(x) ∩ B1 if x ∈ V1,

L(x) ∩ B2 if x ∈ V2.

97

Then, the family Î consists of all instances (C, H1, LC) constructed in this way for C =

(C, (V1, V2)) ∈ C.

Observe that by Claim 6.1.5.2Claim 6.1.5.2 each vertex x ∈ V (G) belongs to at most two instances

(C, LC), (C ′, LC′) ∈ Î, and LC(x) ⊆ B1, LC′(x) ⊆ B2. Hence in particular, LC(x)∩LC′(x) =

∅, so we have

∑
(C,H1,LC)∈̂I

∑
x∈V (C)

(|LC(x)| − 1) ⩽
∑

x∈V (G)
(|L(x) ∩ V (H1)| − 2).

This completes the proof of claim. ⌟

For the next step we define I ⊆ Î to be the set of yes-instances in Î. Let us discuss

how to obtain I from Î. Consider an instance I ′ = (C, H1, LC) ∈ Î. Note that every

subinstance of I ′ is also a subinstance of I. Thus the algorithm A satisfies the assumption

of Lemma 6.1.4Lemma 6.1.4. By this lemma, I ′ can be solved by running the algorithm A on a family

I′ of reduced subinstances of I ′ such that ∑J∈I′ ||J || ⩽ ||I ′||. Summing up, we can obtain

I by calling A on reduced subinstances of I of total measure

∑
I′∈̂I

||I ′|| ⩽
∑

x∈V (G)
(|L(x) ∩ V (H1)| − mΓ), (6.1)

where the bound follows from Claim 6.1.5.3Claim 6.1.5.3.

Finally, for each I ′ = (C, H1, LC) ∈ I, we fix a homomorphism hI′ : (C, LC) → H1; it

exists by the definition of I.11

The last step is the construction of a single instance (G, H2, L2). The definition of the

lists L2 depends on the set I. To introduce them, let us define one more notion.

Suppose a subset S ⊆ V (H1) was collapsed into a vertex s of H2, i.e.,

if Γ = F and S = F , then s = f,

if Γ = BP and S = B, then s = b,

if Γ = BP and S = P , then s = p,

if Γ = BB and S = B1, then s = b1,

if Γ = BB and S = B2, then s = b2.

1An astute reader might notice that we present our algorithms for the decision version of the problem
and formally we do not compute hI′ while solving I ′. Even though the algorithms can be easily adapted
to find such a solution, we do not actually need to compute it: hI′ is only used to argue the correctness.

98

We say that a vertex x ∈ V (G) is an s-vertex if there is Ix = (C, H1, LC) ∈ I, such that

x ∈ V (C) and LC(x) ∩ S ̸= ∅. For every x ∈ V (G) we obtain the list L2(x) from L(x)

by removing all vertices of V (H1) and adding a vertex s if x is an s-vertex. Note that in

case of the BB-decomposition it might happen that a vertex is simultaneously a B1- and

a B2-vertex, in such a case we add both b1 and b2 to L2(x).

Claim 6.1.5.4. Let xy ∈ Ẽ, such that x is an s1-vertex and y is an s2-vertex, for some

S1, S2 ⊆ V (H1). If s1s2 ∈ E(H2), then hIx(x)hIy(y) ∈ E(H).

Proof of Claim. We aim to show that Ix = Iy, which is a sufficient condition for the

statement to hold since hIx is a homomorphism. Let Ix = I(Cx,Px) = (Cx, H1, Lx), Iy =

I(Cy ,Py) = (Cy, H1, Ly). If Γ ∈ {F, BP}, then the fact that (Cx, Px) = (Cy, Py) is a direct

consequence of Claim 6.1.5.2Claim 6.1.5.2, item (2)(2). Hence, consider Γ = BB. Since s1s2 ∈ E(H2),

without loss of generality we may assume that s1 = b1 and s2 = b2. Let Px = (V x
1 , V x

2),

Py = (V y
1 , V y

2).

By the definition of a b1-vertex, Lx(x) ∩ B1 ̸= ∅. Similarly, Ly(y) ∩ B2 ̸= ∅. Hence,

by the construction of I and Claim 6.1.5.3Claim 6.1.5.3, we have that x ∈ V 1
x and y ∈ V 2

y . Moreover,

Lx(x) ⊆ L(x) and Ly(y) ⊆ L(y), and therefore x ∈ X1 ∪ X2, and y ∈ X1 ∪ X3. Hence, by

Claim 6.1.5.2Claim 6.1.5.2 (2)(2), y ∈ V 2
x , and thus, by Claim 6.1.5.2Claim 6.1.5.2 (1)(1), (Cx, (V 1

x , V 2
x)) = (Cy, (V 1

y , V 2
y)).

This concludes the proof. ⌟

The last crucial observation is as following.

Claim 6.1.5.5. There exists a list homomorphism h : (G, L) → H if and only if there

exists a list homomorphism h′ : (G, L2) → H2.

Now, by the claim above and the assumption that there exists A, it is sufficient to call

Lemma 6.1.4Lemma 6.1.4 in order to solve the instance (G, H2, L2). Before we proceed to the proof

of Claim 6.1.5.5Claim 6.1.5.5, let us assume that it holds and show that it already implies our lemma.

Running time and the total size of Î. By Claim 6.1.5.3Claim 6.1.5.3, the family Î can be con-

structed in time polynomial in ||I||. It remains to analyze the total sum of the measures

of the instances we need to solve in order to solve I. Specifically, we will show that

∑
(C,H1,LC)∈̂I

||(C, H1, LC)|| + ||(G, H2, L2)|| ⩽
∑

x∈V (G)
(|L(x) ∩ V (H1)| − 1). (6.2)

99

By Lemma 6.1.4Lemma 6.1.4, the total measure of instances considered while solving (G, H2, L2) is

at most ||(G, H2, L2)||. For every x ∈ V (G), if Γ = BB, then L2(x) ⊆ (L(x) \ V (H1)) ∪

{b1, b2}, and otherwise L2(x) ⊆ (L(x) \ V (H1)) ∪ {s}, where s ∈ {b, p, f}. Consequently,

||(G, H2, L2)|| =
∑

x∈V (G)
(|L2(x)| − 1) ⩽

∑
x∈V (G)

(|L(x) \ V (H1)| + mΓ − 1).

Combining this with (6.16.1), the left side of (6.26.2) is bounded by

∑
x∈V (G)

(|L(x) ∩ V (H1)| + |L(x) \ V (H1)| − 1) ⩽
∑

x∈V (G)
(|L(x)| − 1).

Since we call Lemma 6.1.4Lemma 6.1.4 precisely once for each instance in Î∪{(G, H2, L2)}, this implies

that the total size of instances for which we called the algorithm A is bounded by ||I||.

This concludes the proof of the lemma, assuming Claim 6.1.5.5Claim 6.1.5.5.

Proof of Claim 6.1.5.5Claim 6.1.5.5. We prove the claim for Γ ∈ {BP, BB}, as they are more

complicated ones. The proof for Γ = F is analogous to the one for Γ = BP .

Case 1: Γ = BP . First, suppose there exists a list homomorphism h : (G, L) → H. We
define h′ : (G, L) → H2 as follows:

h′(x) :=


b if h(x) ∈ B,

p if h(x) ∈ P,

h(x) otherwise.

Let us prove that h′ is a list homomorphism from (G, L2) to H2. By definition of BP -

decomposition and H2, it is straightforward to verify that h′ is a homomorphism. Let us

prove that is respects lists L2. Consider a vertex x ∈ V (G). If h(x) /∈ B ∪ P , then clearly

h′(x) ∈ L2(x), as no vertices from V (H) \ (B ∪ P) were removed from L(x) to obtain

L2(x). So let us assume that h(x) ∈ B ∪ P . Then x ∈ V (C) for some BP -component C

for h. By Claim 6.1.5.2Claim 6.1.5.2 (3)(3) we know that C = (C, (V (C))) ∈ C. Hence, by Claim 6.1.5.3Claim 6.1.5.3,

there exists a yes-instance IC = (C, H1, LC) ∈ Î such that LC(x) = L(x) ∩ V (H1). Thus,

(C, H1, LC) ∈ I. Note that L(x) cannot intersect both B and P . Hence, if h(x) ∈ B (resp.,

h(x) ∈ P), then hIC (x) ∈ B (respectively, hIC (x) ∈ P), implying that x is a b-vertex (resp.,

a p-vertex). Then b ∈ L2(x) (resp., p ∈ L2(x)), This proves that h′ respects L2.

For the other direction, suppose that there exists a list homomorphism h′ : (G, L2) →

100

H2. We define h : (G, L) → H as follows. If h′(x) /∈ {b, p}, then we set h(x) := h′(x).

If h′(x) = b (or h′(x) = p, resp.), then x is a b-vertex and x ∈ X1 and (resp., x is a

p-vertex, and x ∈ X2), in particular there exists an instance Ix = (Cx, Lx) ∈ I such that

x ∈ V (C) and Lx(x) ⊆ B (resp., Lx(x) ⊆ P). We set h(x) := hIx(x). By Claim 6.1.5.3Claim 6.1.5.3

we have Lx(x) ⊆ L(x) ∩ B (resp., Li(x) ⊆ L(x) ∩ P), hence it remains to check if h is a

homomorphism from G to H.

Let xy ∈ E(G). Since h′ is a homomorphism, if h(x), h(y) /∈ B ∪ P , then h(x)h(y) ∈

E(H). If h(x), h(y) ∈ B ∪ P , then either h(x), h(y) ∈ P , or xy ∈ Ẽ. In the first

case h(x)h(y) ∈ E(H) since P is a reflexive clique, in the second case, by Claim 6.1.5.4Claim 6.1.5.4,

h(x)h(y) = hIx(x)hIy(y) ∈ E(H).

Finally, assume that, say, h(x) ∈ B ∪P and h(y) /∈ B ∪P . Suppose first that h(x) ∈ B

and thus h′(x) = b. As h′ is a homomorphism, we have that h(y) = h′(y) ∈ N(b)\{p} ⊆ K,

and thus h(y) must be adjacent to h(x). If h(x) ∈ P , we have h′(x) = p. Therefore, since

h′ is a homomorphism, h(y) = h′(y) ∈ K ∪ M . Hence, h(y) is adjacent to h(x), which

concludes the proof in this case.

Case 2: Γ = BB. First, suppose there exists a list homomorphism h : (G, L) → H. We
define h′ : (G, L2) → H2 as follows:

h′(x) :=


b1 if h(x) ∈ B1,

b2 if h(x) ∈ B2,

h(x) otherwise.

It is straightforward to observe that h′ preserves edges. Let us verify that it respects

lists L2. For the sake of contradiction, suppose there is a vertex x of G such that h′(x) /∈

L2(x). As h is a homomorphism respecting lists L and we removed only vertices of B1 ∪B2

to obtain L2 from L, this can only happen if h′(x) = bj for j ∈ {1, 2} and bj /∈ L2(x)—by

symmetry, assume that j = 1. Hence, there exists a BB-component C for h such that

x ∈ V (C). Let V1, V2 be the sets of vertices of C that are mapped by h, respectively, to

B1 and B2. In particular, x ∈ V1. By Claim 6.1.5.2Claim 6.1.5.2 (3)(3), C = (C, (V1, V2)) ∈ C. Hence,

by Claim 6.1.5.3Claim 6.1.5.3, there exists a yes-instance IC = (C, H1, LC) ∈ Î such that LC(x) =

B1 ∩ V (H1) ∩ L(x). Hence, IC := (C, H1, LC) ∈ I. Furthermore, hIC (x) ∈ B1, implying

that x is a b1-vertex, and thus b1 ∈ L2(x). We proved that h′ respects L2.

For the opposite direction, suppose there is a list homomorphism h′ : (G, L2) → H2.

101

We define h : (G, L) → H as follows. If h′(x) /∈ {b1, b2}, we set h(x) := h′(x). If h′(x) = bj

for j ∈ {1, 2}, then x is a bj-vertex, i.e., there exists an instance Ix = (Cx, Lx) ∈ I such

that x ∈ Cx and hIx(x) ∈ Bj. We set h(x) = hIx(x). Again, by Claim 6.1.5.3Claim 6.1.5.3 we have

that Lx(x) ⊆ L(x) ∩ Bj, it remains to verify that h is a homomorphism from G to H.

Let xy ∈ E(G) and, for the sake of contradiction, suppose that h(x)h(y) /∈ E(H).

Since h′ is a homomorphism, it cannot happen that h(x), h(y) /∈ B1 ∪ B2. By symmetry,

assume that h(x) ∈ B1, which implies that x ∈ X1 ∪ X2 and that h′(x) = b1. Note that

we cannot have h(y) ∈ B1 as this would imply that h′(y) = b1, so h′(x)h′(y) /∈ E(H2), a

contradiction with h′ being a homomorphism. If h(y) ∈ B2, then y ∈ X1∪X3, and xy ∈ Ẽ.

Since h′(x)h′(y) ∈ E(H2), by Claim 6.1.5.4Claim 6.1.5.4 we obtain that h(x)h(y) = hIx(x)hIy(y) ∈

E(H). On the other hand, if h(y) ∈ M2∪K, then h(y) = h′(y) ∈ M2∪K and thus h(x)h(y)

is an edge of H. This completes the proof of Claim 6.1.5.5Claim 6.1.5.5 and the proof of Lemma 6.1.5Lemma 6.1.5.

Let f be a function that takes two graphs G and H as arguments, and returns an

element of R+. We say that f is factor-monotone if

• f(G′, H) ⩽ f(G, H), if G′ is an induced subgraph of G, and

• f(G, H ′) ⩽ f(G, H), if H ′ is an induced subgraph of H or there exists a factorization

tree T such that H ′ ∈ FactorsT (H).

Now, with Lemma 6.1.4Lemma 6.1.4 and Lemma 6.1.5Lemma 6.1.5 in hand, we can finally prove our main decom-

position theorem. We state the theorem in general, in terms of factor-monotone functions.

Theorem 6.1.6. Let I = (G, H, L) be an instance of LHom. Suppose we have an algo-

rithm that solves every reduced instance Î = (Ĝ, Ĥ, L̂) of LHom, such that

1. Ĝ is an induced subgraph of G, and

2. Ĥ is an undecomposable graph in Ind(FactorsT (H)), for some T ,

in time f(Ĝ, Ĥ) · ||Î||c1 for some factor-monotone function f and some constant c1 > 0.

Then we can solve I in time 2f(G, H) · (|V (G)| · |V (H)|)c2 for some constant c2 > 0 that

depends only on c1.

Proof. We can assume that |V (G)| is sufficiently large, as otherwise we can solve the

problem by brute-force.

We observe that it is enough to prove the following claim.

102

Claim 6.1.6.1. Let I ′ = (G′, H ′, L′) be a reduced instance of LHom. Suppose we have

an algorithm that solves every reduced instance Î ′ = (Ĝ′, Ĥ ′, L̂′) of LHom, such that

1. Ĝ′ is an induced subgraph of G′, and

2. Ĥ ′ is an undecomposable graph in Ind(FactorsT (H ′)), for some T ,

in time f(Ĝ′, Ĥ ′) · ||Î ′||c1 for some factor-monotone function f and some constant c1 > 0.

Then we can solve I ′ in time 2f(G′, H ′) · ||I ′||c3, for some constant c3 > 0.

Indeed, I = (G, H, L) is a non-reduced instance, where G is sufficiently large and we

assume that the claim holds, i.e., there exists an algorithm A that solves every reduced

instance I ′ = (G′, H ′, L′) in time 2f(G′, H ′) · ||I ′||c3 , for some constant c3 > 0. By

Lemma 6.1.4Lemma 6.1.4, we can solve I by running A on a (possibly empty) family I of reduced

subinstances of I, such that ∑I′∈I ||I ′|| ⩽ ||I||, and all the additional computations are

done in time (|V (G)| · |V (H)|)c4 for some constant c4 > 0. Note that

∑
I′=(G′,H′,L′)∈I

(
2f(G′, H ′) · ||I ′||c3

)
⩽ 2f(G, H)

 ∑
I′=(G′,H′,L′)∈I

||I ′||

c3

⩽ 2f(G, H) · ||I||c3 ,

where the first inequality follows from the fact that f(G′, H ′) ⩽ f(G, H), and the second

one follows from the convexity of the function g(x) = xc3 . As ||I|| ⩽ |V (G)| · |V (H)| and

|V (G)| is sufficiently large, the running time we obtain is bounded by

(|V (G)| · |V (H)|)c4 + 2f(G, H) · ||I||c3 ⩽ 2f(G, H) · (|V (G)| · |V (H)|)c2 ,

for c2 = c4 + c3 + 1.

It remains to prove Claim 6.1.6.1Claim 6.1.6.1. Again, we observe that it is enough to prove the

following.

Claim 6.1.6.2. Let I ′ = (G′, H ′, L′) be a reduced instance of LHom. Suppose we have

an algorithm that solves every reduced instance Î ′ = (Ĝ′, Ĥ, L̂′) of LHom, such that

1. Ĝ′ is an induced subgraph of G′, and

2. Ĥ ′ is an undecomposable graph in Ind(FactorsT (H ′)), for some T ,

in time f(Ĝ′, Ĥ ′) · ||Î ′||c1 for some factor-monotone function f and constant c1 > 0. Then

we can solve I ′ in time f(G′, H ′) · ||I ′||c5 · |V (H ′)|, for some factor-monotone function f

and constant c5 > 0.

103

Indeed, to obtain Claim 6.1.6.1Claim 6.1.6.1 from Claim 6.1.6.2Claim 6.1.6.2 it is enough to recall that since I ′ is

reduced, we have that |V (H ′)| ⩽ 2 · ||I ′||. Hence,

f(G′, H ′) · ||I ′||c5 · |V (H ′)| ⩽ 2f(G′, H ′) · ||I ′||c3 ,

where c3 = c5 + 1.

Proof of Claim. We prove the claim by the induction on the number of vertices of H ′.

We assume that G′ is connected, as otherwise we can solve the problem separately for

each connected component of G′. For the base case, suppose that H ′ is either (i) a bi-arc

graph, or (ii) a connected, undecomposable graph. In particular, if |V (H ′)| ⩽ 2, then

H ′ must be a bi-arc graph, since H ′∗ has at most four vertices (recall Observation 5.3.1Observation 5.3.1).

Note that these cases can be recognized in polynomial time (combining Theorem 5.1.6Theorem 5.1.6

and the fact that circular-arc graphs can be recognized in time |V (H ′)|c6 ⩽ ||I ′||c6 for

some constant c6 [9292], and by Theorem 6.1.2Theorem 6.1.2).

In case (i) we solve the problem in time polynomial in G′ and H ′, which, since I ′

is reduced, is polynomial in ||I ′||. Hence, assume that (ii) holds, i.e., H ′ is connected

(since I ′ is reduced), non-bi-arc, undecomposable, and has at least three vertices. By the

assumption of the claim, we can solve I ′ in time f(G′, H ′) · ||I ′||c1 ⩽ f(G′, H ′) · ||I ′||c1 ·

(|V (H ′)| − 1) for some c1 > 0. We define c7 = max{c1, c6}. The total time, including

recognizing case (ii), is bounded by

||I ′||c6 + f(G′, H ′) · ||I ′||c1 · (|V (H ′)| − 1) ⩽ f(G′, H ′) · ||I ′||c7 · |V (H ′)|.

This completes the proof of the base case.

Now suppose that H ′ is a connected, non-bi-arc graph that is decomposable, and

assume that for every Ĥ ′ such that |V (Ĥ ′)| < |V (H ′)| we can solve every instance Î ′ =

(Ĝ′, Ĥ ′, L̂′) of LHom in time f(Ĝ′, Ĥ ′) · ||Î ′||c7 · |V (Ĥ ′)|. Let δ be a decomposition of H ′

and let (H1, H2) be its factorization. Recall that if H ′ is decomposable, then for every

H ′′ ∈ Ind(Factors(H ′)) we have |V (H ′′)| < |V (H ′)|. Hence, by the induction hypothesis,

there is an algorithm A that solves every instance Î ′ = (Ĝ′, Ĥ ′, L̂′) of LHom where Ĝ′ is

an induced subgraph of G′ and Ĥ ′ ∈ Ind(Factors(H ′)), in time

f(Ĝ′, Ĥ ′) · ||Î ′||c7 · |V (Ĥ ′)| ⩽ f(G′, H ′) · ||Î ′||c7 · |V (Ĥ ′)|.

104

By Lemma 6.1.5Lemma 6.1.5, we can solve the instance I ′ by calling algorithm A on a family I of

instances with total measure bounded by ||I ′||, such that all the additional computations

can be done in time ||I ′||c8 , for some constant c8 > 0. The total running time (including

finding a decomposition of H) is bounded by

||I ′||c8 +
∑

Î′=(Ĝ′,Ĥ′,L̂′)∈I

f(Ĝ′, Ĥ ′) · ||Î ′||c7 · |V (Ĥ ′)|

⩽ ||I ′||c8 +
∑

Î′=(Ĝ′,Ĥ′,L̂′)∈I

f(G′, H ′) · ||Î ′||c7 · |V (Ĥ ′)|

⩽ ||I ′||c8 + f(G′, H ′)
∑
Î′∈I

||Î ′||c7 · (|V (H ′)| − 1)

= ||I ′||c8 + f(G′, H ′) · (|V (H ′)| − 1)
∑
Î′∈I

||Î ′||c7

⩽ ||I ′||c8 + f(G′, H ′) · (|V (H ′)| − 1) · ||I ′||c7 ⩽ f(G′, H ′) · ||I ′||c5 · |V (H ′)|,

where the last inequality follows by choosing c5 = max{c7, c8}. ⌟

This concludes the proof of Theorem 6.1.6Theorem 6.1.6.

To conclude this section, we summarize important properties of Factors(H).

Theorem 6.1.7. Let H be a graph. In time polynomial in |V (H)| we can construct a

family Factors(H) of O(|V (H)|) graphs, such that:

(1) each H ′ ∈ Factors(H) is either bi-arc or undecomposable,

(2) for each H ′ ∈ Factors(H), the graph H ′∗ is an induced subgraph of H∗,

(3) H is a bi-arc graph if and only if every H ′ ∈ Factors(H) is a bi-arc graph,

(4) for every instance (G, H, L) of LHom, the following holds:

Assume that there exists an algorithm A that solves every reduced instance I ′ =

(G′, H ′, L′) such that G′ is an induced subgraph of G and H ′ is an undecomposable

element of Ind(Factors(H)), in time f(G′, H ′) · ||I ′||O(1) for some factor-monotone

function f . Then we can solve I in time f(G, H) · ||I||O(1).

Proof of Theorem 6.1.7Theorem 6.1.7. Clearly, property (1)(1) follows from the construction of Factors(H)

and property (2)(2) follows from Lemma 5.2.8Lemma 5.2.8.

105

To see that property (3)(3) holds, assume that H is non-bi-arc and there exists a factor-

ization (H1, H2) of H. It is enough to show that at least one of H1, H2 is non-bi-arc. If H

is connected, then we are done by Lemma 5.2.6Lemma 5.2.6. Otherwise, there exists (i) a connected

component H ′ of H that is decomposable with factorization (H ′
1, H ′

2) such that H1 = H ′
1

and H ′
2 is an induced subgraph of H2, and (ii) a connected component H ′′ of H that is

non-bi-arc. Indeed, (i) follows from the definition of factorization of a disconnected graph.

For (ii), if every connected component of H is a bi-arc graph, then by Theorem 5.1.6Theorem 5.1.6, H∗

is a complement of circular-arc graph, so H is also a bi-arc graph. If H ′ is a bi-arc graph,

then again, by the definition of factorization (H1, H2), H2 contains H ′′ as an induced

subgraph, so H2 is non-bi-arc. If H ′ is non-bi-arc, by Lemma 5.2.6Lemma 5.2.6 at least one of H ′
1, H ′

2

is non-bi-arc, so at least one of H1, H2 is non-bi-arc. That concludes the proof of (3)(3).

Last, property (4)(4) follows precisely from Theorem 6.1.6Theorem 6.1.6.

6.2 The algorithm

In this section we use Theorem 6.1.6Theorem 6.1.6 to prove the following version of Theorem 1.3.3Theorem 1.3.3 a).

Note that here the input tree decomposition is not assumed to be optimal.

Theorem 1.2’ a). Let I = (G, H, L) be instance of LHom. We can solve I in time

i∗(H)t · (n · |V (H)|)O(1), provided that G is an n-vertex graph given with its tree decompo-

sition of width t and of size polynomial in n.

Before we proceed to the proof of Theorem 1.2’ a)Theorem 1.2’ a), we need two more tools. For an

instance I = (G, H, L) of LHom, the associated instance is the instance (G∗, H∗, L∗) of

LHom, where G∗ and H∗ are, respectively, associated bipartite graphs of G and H, and

L∗ is the associated list function. We start by the following observation.

Observation 6.2.1. Consider an instance (G, H, L) of LHom and its associated instance

(G∗, H∗, L∗). Suppose that G is given along with a tree decomposition T of width t.

(1) For each v ∈ V (G), a ∈ V (H), we have a ∈ L(v) if and only if a′ ∈ L∗(v′) if and only

if a′′ ∈ L∗(v′′). In particular, each list is contained in one bipartition class of H∗.

(2) In time polynomial in |V (G)| we can construct a tree decomposition T ∗ of G∗ of width

at most 2t with the property that for each x ∈ V (G), each bag of T ∗ either contains

both x′, x′′ or none of them.

106

Proof. The first item follows directly from the definition of (G∗, H∗, L∗). To see the second

item, consider a tree decomposition T of G. We construct T ∗ by taking the same tree

structure as for T , and replacing each vertex v of G in each bag of T by the vertices v′, v′′

of G∗. It is straightforward to verify that this way we obtain a tree decomposition T ∗

with the desired properties.

The only step that is missing is describing how to solve the instances (G, H, L) where

H is an undecomposable graph. This follows, in particular, from the next lemma.

Lemma 6.2.2. A reduced instance I = (G, H, L) of LHom can be solved in time i(H∗)t ·

||I||c1, for some constant c1 > 0, assuming a tree decomposition of G of width at most t

and size polynomial in n is given.

Proof. Let (G∗, H∗, L∗) be the associated instance of I. By Proposition 5.0.2Proposition 5.0.2, we know

that (G, L) → H if and only if there is a clean (i.e., mapping twins to twins) homomor-

phism (G∗, L∗) → H∗. We focus on finding such a clean homomorphism.

First, since I is reduced, each list L is a sound incomparable set. Observation 6.2.1Observation 6.2.1 (1)(1)

asserts that every list in L∗ is also a sound incomparable set. Thus the size of each list

in L∗ is at most i(H∗). Moreover, for every v ∈ V (G), the vertices in L∗(v′) are precisely

the twins of the vertices in L∗(v′′). Finally, by Observation 6.2.1Observation 6.2.1 (2)(2), in time polynomial

in |V (G)| we can obtain a tree decomposition T ∗ of G∗ with width at most 2t, in which

vertices of G∗ come in pairs: a bag contains v′ if an only if it also contains v′′.

Consider the straightforward dynamic programming algorithm for LHom, using the

tree decomposition T ∗ of G∗. We observe that since we are looking for a clean homomor-

phism, we do not need to remember partial solutions in which the twins are not mapped

to twins. Thus, even though the size of each bag of T ∗ is at most 2t, the number of

partial colorings we need to consider is bounded by (maxv∈V (G∗) |L∗(v)|)t ⩽ i(H∗)t, and

the lemma follows.

Finally, let us wrap everything up and prove Theorem 1.2’ a)Theorem 1.2’ a).

Proof of Theorem 1.2’ a)Theorem 1.2’ a). First, we note that if G′ is an induced subgraph of G, then we

can easily modify the input tree decomposition of G into a tree decomposition of G′ with

width at most t. Second, if H ′ is an induced subgraph of H, or belongs to Ind(Factors(H)),

then, by Lemma 5.2.8Lemma 5.2.8, i∗(H ′) ⩽ i∗(H). Hence, f(G, H) = i∗(H)t is factor-monotone. By

107

Theorem 6.1.6Theorem 6.1.6, it is enough to show that every reduced instance I ′ = (G′, H ′, L′) of

LHom, such that G′ is an induced subgraph of G and H ′ is an undecomposable graph in

Ind(Factors(H)), in time i∗(H ′)t · ||I ′||c1 for some constant c1 > 0.

Hence, consider a reduced instance I ′ = (G′, H ′, L′). If H ′ is a bi-arc graph, we solve

the problem in time polynomial in G′ and H ′ [3939], which, since I ′ is reduced, is polynomial

in ||I ′||. (An astute reader may notice that in [3939] the target graph is assumed to be fixed.

However, the algorithm works in polynomial time also if H is assumed to be a part of the

input.) Since for bi-arc graphs H ′ we have i∗(H ′) = 1 by definition, the statement holds.

Thus, assume that H ′ is connected (since I ′ is reduced), non-bi-arc, and undecompos-

able. Recall that by Lemma 6.2.2Lemma 6.2.2, we can solve I ′ in time i(H ′∗)t ·||I ′||c1 for some constant

c1 > 0. If H ′ is a strong split graph, then by Lemma 5.3.4Lemma 5.3.4 we have that i∗(H ′) = i(H ′∗),

and we are done. Otherwise, by Theorem 5.0.1Theorem 5.0.1, H ′∗ is connected (if H ′ is non-bipartite),

or consists of two disjoint copies of H ′ (if H ′ is bipartite). Moreover, by Lemma 5.2.7Lemma 5.2.7,

H ′∗ is undecomposable. Thus, by the definition of i∗(H ′), we observe that

i(H ′∗) ⩽max{i(H ′′) : H ′′ is an undecomposable, connected, induced subgraph of H ′∗,

whose complement is not a circular-arc graph} = i∗(H ′∗) = i∗(H ′).

Hence, the total time is bounded by

i(H ′∗)t · ||I ′||c1 ⩽ i∗(H ′)t · ||I ′||c1 .

That completes the proof.

6.3 Building list gadgets

In this section we are going to introduce the tools necessary to prove the hardness counter-

part of Theorem 1.3.3Theorem 1.3.3, and then prove Theorem 1.3.3Theorem 1.3.3 (b). As highlighted in its statement,

we are going to show that the lower bound holds even if target graph as fixed, and not a

part of an instance. Recall that for a fixed H, the LHom(H) problem takes as an instance

a pair (G, L), where G is a graph and L : V (G) → 2V (H), and asks whether (G, L) → H.

Again, we are going to show a slightly stronger theorem: that the claimed lower bound

holds even if we assume that the input graph G is bipartite.

108

Theorem 6.3.1. Let H be a fixed, connected, non-bi-arc graph. Unless the SETH fails,

there is no algorithm that solves the LHom(H) problem on bipartite instances with n

vertices and treewidth t in time (i∗(H) − ε)t · nO(1), for any ε > 0.

For that, we are going to define a list analogue of an S-gadget that we introduced in

Section 3.1.2. Let H be a graph, let t ∈ N and let S ⊆ V (H)t. A list-S-gadget is a triple

(F, L, x), where F is a graph, L : V (F) → 2V (H), and x = (x1, . . . , xt) ∈ V (F)t, such that

{(h(x1), h(x2), . . . , h(xt)) | h : (F, L) → H} = S.

We call the elements of x the interface vertices of the gadget.

Observe that since the LHom(H) problem is a generalization of Hom(H) and Ex-

tHom(H) problems, and the notions of S-gadget and S-construction, introduced in Sec-

tion 3.1.2, can be seen as particular cases of list-S-gadgets. The consequences of this fact

are discussed later in Section 7.3Section 7.3.

The key element of the hardness proof is the existence of certain list-S-gadgets.

Theorem 6.3.2. Let t ∈ N, and let H be a connected, non-bi-arc, undecomposable graph.

Let S ⊆ V (H)t be such that the set Si = {ai ∈ V (H) | (a1, . . . , ai−1, ai, ai+1, . . . , at) ∈ S},

for each i ∈ [t], is a sound incomparable set in V (H). Then there exists a list-S-gadget.

The general idea of the proof of Theorem 6.3.1Theorem 6.3.1 is quite straightforward: we are going

to reduce from the k-Coloring problem. Consider an instance G of k-Coloring, where

k = i∗(H). Let H ′ ∈ FactorsT (H), for some factorization tree T , contain a sound incom-

parable set S of size k. We construct a graph G′ by replacing each edge uv of G with a

copy of the gadget that simulates the inequality relation on S. By the properties of the

gadget, we observe that G′ has a list homomorphism to H ′ if and only if G is a yes-instance

of k-Coloring. Furthermore, the construction of the gadget depends on H ′ only, and

since H (and thus H ′) is assumed to be fixed, we conclude that tw(G′) = tw(G) + O(1).

The formal proof of this reduction is shown in Section 6.4Section 6.4. The remaining part of the

current section is dedicated to the proof of Theorem 6.3.2Theorem 6.3.2. We also point out that to

prove Theorem 6.3.1Theorem 6.3.1 we need Theorem 6.3.2Theorem 6.3.2 only for case t = 1, but the general setting

will become useful in Chapter 7Chapter 7.

We claim that to prove Theorem 6.3.2Theorem 6.3.2 it is enough to focus on bipartite target graphs.

The reason for that is captured by the following statement. Recall that for a set W ⊆

109

V (H) by W ′ (W ′′, resp.) we denote the set {a′ ∈ V (H∗) | a ∈ W} ⊆ V (H∗) ({a′′ ∈

V (H∗) | a ∈ W} ⊆ V (H∗), resp.) where H∗ is the associated bipartite graph of H.

Proposition 6.3.3. Let H be a graph, let (G, L) be an instance of LHom(H∗), such that

• G is bipartite, with bipartition classes X and Y ,

• L(X) ⊆ V (H)′ and L(Y) ⊆ V (H)′′.

Define L̂ : V (G) → 2V (H) as L̂(v) = {a | {a′, a′′} ∩ L(v) ̸= ∅}. Then the following hold:

1. For f | (G, L) → H∗, define f ′ : V (G) → V (H) by setting f ′(v) to be the unique

vertex a of H, such that f(v) ∈ {a′, a′′}. Then f ′ : (G, L̂) → H.

2. For f ′ | (G, L̂) → H, define f : V (G) → V (H∗) by setting f(v) := a′ if v ∈ X and

f(v) := a′′ if v ∈ Y , where a = f ′(v). Then f : (G, L) → H∗.

Proof. For 1., it is straightforward to verify that f ′ is well-defined. To see that f ′ is

a homomorphism, consider an edge xy of G. Since f is a homomorphism, we have

f(x)f(y) ∈ E(H∗). Without loss of generality assume that f(x) = a′ and f(y) = b′′

for some some edge ab of H (possibly a = b). But then f ′(x)f ′(y) = ab ∈ E(H), so f ′

is a homomorphism from G to H. It remains to show that f ′ respects L̂. This follows

from the definition of L̂: consider a vertex v ∈ V (G), and let a ∈ V (H) be such that

f(v) ∈ {a′, a′′}. Note that since {a′, a′′} ∩ L(v) ̸= ∅, we have a ∈ L̂(v).

Next, we prove 2. Again, note that f is well-defined. To see that f is a homomorphism,

consider an edge xy of G, such that x ∈ X and y ∈ Y . Assume that f ′(x) = a and

f ′(y) = b, where ab is an edge of H (possibly a = b). Then f(x)f(y) = a′b′′ ∈ E(H∗).

To see that f respects the lists L. Consider a vertex x ∈ X (the case of a vertex in Y

is symmetric). Since f ′(x) = a, we observe that a ∈ L̂(x), which means that a′ ∈ L(x).

That concludes the proof.

Intuitively, Proposition 6.3.3Proposition 6.3.3 states that we can slightly modify the lists in a list-S-

gadget that is constructed for H∗ to obtain a gadget constructed for H. Because of that,

it turns out that it is enough to focus on bipartite graphs H. In particular, the following

lemma is the crucial part of the proof of Theorem 6.3.2Theorem 6.3.2.

Lemma 6.3.4. Let t ∈ N, and let H be a connected, bipartite, undecomposable graph

that is not the complement of a circular-arc graph. Let S ⊆ V (H)t be such that for

110

every i ∈ [t] the set Si = {ai ∈ V (H) | (a1, . . . , ai−1, ai, ai+1, . . . , at) ∈ S} is a sound

incomparable set. Then there exists a list-S-gadget.

We show that Lemma 6.3.4Lemma 6.3.4 implies Theorem 6.3.2Theorem 6.3.2.

Lemma 6.3.4Lemma 6.3.4 → Theorem 6.3.2Theorem 6.3.2: We distinguish three cases, based on whether H is

bipartite, H is a strong split graph or none of these holds.

If H is bipartite, the lemma follows directly. If H is a strong split graph, let (B, P)

be its partition, and let H ′ be the undecomposable and connected graph defined as in

Lemma 5.3.4Lemma 5.3.4 3.. Recall that H ′ is not the complement of circular-arc graph. Observe that

since for each b ∈ B and p ∈ P we have NH(b) ⊆ NH(p), every set Si is contained either

in B or P . Thus, every Si is a sound incomparable set in H ′. We apply Lemma 6.3.4Lemma 6.3.4 to

H ′ and obtain a list-S-gadget.

If H is not bipartite nor a strong split graph, let H∗ be an associated bipartite graph

of H. By Theorem 5.1.6Theorem 5.1.6, the graph H∗ is not the complement of a circular-arc graph.

Moreover, by Theorem 5.0.1Theorem 5.0.1, since H is non-bipartite and connected, H∗ is connected,

and by Lemma 5.2.7Lemma 5.2.7, since H is connected, undecomposable, non-bi-arc, and not a strong

split graph, H∗ is undecomposable. Since every Si is a sound incomparable set in H,

every S ′
i ⊆ V (H)′ is a sound incomparable set in H∗. Define

S ′ = {(s′
1, . . . , s′

k) ∈ S ′
1 × . . . × S ′

m | (s1, . . . , sk) ∈ S}.

We apply Lemma 6.3.4Lemma 6.3.4 to H∗ and obtain a list-S ′-gadget (F, L, x). We obtain the desired

gadget (F, L̂, x) by applying Proposition 6.3.3Proposition 6.3.3 to the instance (F, L) of LHom(H∗). □

Building gadgets from walks. To construct list-R-gadgets as in Lemma 6.3.4Lemma 6.3.4, we

use the existence of certain avoiding walks in H. For a set K of walks in H of equal length

ℓ ⩾ 1, let

∂K = {(d1, dℓ+1) ∈ V (H)2 | K : d1 → dℓ+1 ∈ K},

and by Ki, for i ∈ [ℓ + 1], the set of all vertices of H that occur as the i-th element of

some walk in K.

We construct a list gadget for a relation D such that ∂K ⊆ D, but no pair of the form

111

(d1, d′
ℓ+1), where d1 is the beginning of some K ∈ K, d′

ℓ+1 is the end of some K′ ∈ K, and

K avoids K′, belongs to D. We formalize it as follows.

Lemma 6.3.5. Let K = {Ki}k
i=1 be a set of walks in a graph H of equal length ℓ ⩾ 1.

Let A,B be a partition of K such that every walk in A avoids every walk in B. Then there

exists a relation D[A,B] and a list-D[A,B]-gadget (P, LA,B, (x, y)) such that:

(a) LA,B(x) = K1, and LA,B(y) = Kℓ+1,

(b) ∂K ⊆ D[A,B],

(c) if (a, b) ∈ D[A,B] and a ∈ A1, then b /∈ Bℓ+1.

Furthermore, if every walk in B avoids every walk in A, we additionally have

(d) if (b, a) ∈ D[A,B] and b ∈ B1, then a /∈ Aℓ+1.

Proof. For every i ∈ [k] and j ∈ [ℓ], by di
j we denote the j-th vertex of Ki. Let P =

(p1, . . . , pℓ+1) be a path of length ℓ. Define LA,B : V (P) → 2V (H) as LA,B(pi) = Ki, and let

x = p1 and y = pℓ+1. Clearly, (P, LA,B) is an instance of LHom(H), and (P, LA,B, (x, y))

a list-D[A,B]-gadget for some relation D[A,B]. We claim that D[A,B] satisfies (a)-(c).

The statement (a) follows directly from the definitions of LA,B, x and y. For (b),

consider any i ∈ [k] and (di
1, di

ℓ+1) ∈ ∂K. Define fi(pj) := di
j for j ∈ [ℓ + 1]. Observe that

fi is indeed a list homomorphism (P, LA,B) → H, since for every edge pjpj+1 of P it holds

that fi(pj) and fi(pj+1) are consecutive vertices di
j and di

j+1 of the walk Ki, and thus they

are adjacent in H. Since fi(x) = di
1 and fi(y) = di

ℓ+1, the statement (b) follows.

To show (c), suppose there exists a list homomorphism f : (P, LA,B) → H such that

f(x) ∈ A1 and f(y) ∈ Bℓ+1. We note that A1 ∩ B1 = ∅, as ℓ ⩾ 1 and each walk from A

avoids each walk from B. Let i ∈ [ℓ + 1] be the minimum integer such that there exists a

walk Kr ∈ B with f(pi) = dr
i . Note that it exists since f(pℓ+1) ∈ Bℓ+1. Moreover, i ⩾ 2

since f(p1) ∈ A1 and A1 ∩ B1 = ∅. By minimality of i, we have f(pi−1) = ds
i−1 for some

Ks ∈ A. Thus there is a walk Ks ∈ A and a walk Kr ∈ B, such that Ks does not avoid

Kr, a contradiction. The property (d) can by shown by switching the roles of A and B.

Let S1 ⊆ V (H)t and S2 ⊆ V (H)t′ . Let W1 = (P1, L, (x1, . . . , xt)) and W2 =

(P2, L, (y1, . . . , yt′)) be, respectively, a list-S1-gadget and a list-S2-gadget, such that V (P1)∩

112

V (P2) = ∅. A composition at (i, i′) of W1 and W2, where i ∈ [t], i′ ∈ [t′], is a list gadget

W = (P, L′, (x1, . . . , xt, y1, . . . , yi′−1, yi′+1, . . . , yt′)),

obtained by

• identifying xi ∈ V (P1) and yi′ ∈ V (P2),

• setting L′(v) = L(v) for every v ∈ V (P) \ {xi} and L′(xi) = L(xi) ∩ L(yi′).

It is straightforward to verify that W is a list-S-gadget, where S is defined as

S = {(s1, . . . , st, s′
1, . . . , s′

i′−1, s′
i′+1, . . . , s′

t′) | (s1, . . . , st) ∈ S1,

(s′
1, . . . , s′

t′) ∈ S2 and si = s′
i′}.

Clearly, a composition of two gadgets can be described by identifying interface vertices of

these gadgets.

Before we prove Lemma 6.3.4Lemma 6.3.4, we first show how to obtain a few particular gadgets

that will serve as building blocks for the general construction. Let H be a bipartite graph

with an obstruction O, and let (α, β) ∈ C(O). To make the definitions more intuitive, let

us assign logic values to vertices α, β in the following way: α will be interpreted as false,

and β will be interpreted as true. Define a k-ary relation ORt = {α, β}k \ {αk} and a

k-ary relation NANDt = {α, β}k \ {βk}.

Lemma 6.3.6. Let H be a bipartite graph with an obstruction O and let (α, β) ∈ C(O).

For every k ⩾ 2 there exist a list-NANDk-gadget and a list-ORk-gadget.

Proof. First, notice that for any k ⩾ 4, the relation ORk can be expressed as a composition

of the binary relation NEQ = {αβ, βα} and ternary OR3. Indeed, note that a list-ORk-

gadget with interface vertices (x1, x2, . . . , xk) can be easily constructed by introducing

a list-ORk−1-gadget with interface vertices (x1, x2, . . . , xk−2, y), a list-OR3-gadget with

interface vertices (y′, xk−1, xk), and a list-NEQ-gadget with interface vertices (y, y′) (this

corresponds to the textbook NP-hardness reduction from Cnf-Sat to 3-Sat [4949, Sec.

3.1.1.]).

We also observe that for any k ⩾ 3, the relation NANDk can be expressed using the

composition of the ORk relation and the NAND2 relation. Indeed, introduce a list-ORk-

gadget with interface vertices (x1, x2, . . . , xk), and k copies of a list-NAND2-gadget, each

113

with interface vertices (yi, zi), for i ∈ [k]. We obtain a list-NANDk-gadget with interface

vertices (y1, . . . , yk) by identifying xi with zi for each i ∈ [k].

We construct a list-NEQ-gadget as follows. Let X , Y , X ′, Y ′ be the walks given by

Observation 5.1.9Observation 5.1.9. Let (P1, L{X },{Y}, (x, y)) and (P2, L{Y ′},{X ′}, (x′, y′)) be, respectively,

the gadgets obtained by Lemma 6.3.5Lemma 6.3.5. It is straightforward to observe that the graph

obtained from P1 and P2 by identifying x with x′, and y with y′, is a NEQ-gadget

(F, L, (x, y)).

Note that a list-OR2-gadget can be obtained by identifying two of three interface

vertices of a list-OR3-gadget. Also, a list-NAND2-gadget can be obtained by taking two

list-NEQ-gadgets W1 and W2, and a list-OR2-gadget Z, and identifying each interface

vertex of Z with one interface vertex of Z1 and Z2, respectively.

So, in order to prove the lemma, it remains to build gadget for the ternary relation

OR3. By symmetry of O, we can assume that α = w1, β = w5 if O is either an induced

6-cycle or an induced 8-cycle, or α = u0, β = u1 if O is an asteroidal subgraph. Set γ = w3

in the former case, or γ = uk+1 in the latter one. The high-level idea is to construct, for

every c ∈ {α, β, γ}, a list-R(c)-gadget (Pc, L, (xc, yc)) for R(c) = {ab | a ∈ {α, β}, b ∈

{α, β, γ}} \ {(α, c)}.

Suppose we have constructed gadgets (Pc, L, (xc, yc)) for every c ∈ {α, β, γ}. Consider

a graph G obtained from Pα, Pβ, and Pγ by identifying the vertices yα, yβ, and yγ to a

single vertex y. The lists of vertices remain unchanged, note that all y-vertices have the

same list {α, β, γ}, so identifying the vertices does not cause any conflict here. Obviously

we have L(xα) = L(xβ) = L(xγ) = {α, β}. Observe it is not possible to map all xα, xβ, xγ

to α. However, every triple of colors from {α, β}3 \ {(α, α, α)} might appear on vertices

xα, xβ, xγ in some list homomorphism (G, L) → H. Thus, (G, L, (xα, xβ, xγ)) satisfies the

definition of a list-OR3-gadget. Thus, let us show how to construct (Pc, L, (xc, yc)) for

every c ∈ {α, β, γ}.

If O is isomorphic to C6 or C8, then the construction is straightforward and it is

shown on Figure 6.1Figure 6.1 (the picture shows list-OR3-gadgets, with y-vertices of Pc’s already

identified). For the case if O is an asteroidal subgraph, the construction will be quite

similar, but a bit more involved.

First, let us build an auxiliary gadget. Recall the walks W [u1, uk+1] and W [uk+1, u1]

114

{w1, w5}

{w4, w6}

{w1, w3}

{w2, w4}

{w1, w5}

{w4, w6}

{w1, w3, w5}

{w2, w4}

{w3, w5}

{w4, w6}

{w1, w5} {w1, w5}

{w6, w8}

{w5, w7}

{w4, w6, w8}

{w1, w5}

{w4, w8}

{w1, w3}

{w2, w4}

{w1, w3, w5}

{w1, w5}

{w4, w8}

{w5, w7}

{w4, w6}

{w3, w5}

{w2, w4}

Figure 6.1: An OR3-gadget for O ≃ C6 (left) and for O ≃ C8 (right). Recall that the
consecutive vertices of O are denoted by (w1, w2, . . .). The sets next to vertices indicate
lists. Interface vertices are marked gray.

given by Observation 5.1.8Observation 5.1.8, and consider the following walks of equal length:

A = (u0, v0, . . . , u0), B1= (u1, v1, . . . , u1), B2 = W [u1, uk+1].

Note that A is non-adjacent to B1, B2. Moreover, define

A1 = (u0, v0, . . . , u0) ◦ (u0, v0, . . . , u0),

A2 = Wu
1,0 ◦ (u0, v0, . . . , u0),

B = (uk+1, vk+1, . . . , uk+1) ◦ W [uk+1, u1],

and note that A1, A2 are non-adjacent to B. Thus, by Lemma 6.3.5Lemma 6.3.5 we obtain that a

composition (P, L, (x1, y2)) of (P1, L{A},{B1,B2}, (x1, y1)) and (P2, L{A1,A2},{B}, (x2, y2)), is a

list-{u0u0, u1u0, u1u1}-gadget.

Now, to construct (Pc, L, (xc, yc)), suppose we are given a, b ∈ V (H) such that {a, b, c} =

{u0, u1, uk+1}. Let Xc : u0 → a, Yc : u0 → b, and Zc : u1 → c be the walks given by

Observation 5.1.9Observation 5.1.9 such that Xc, Yc avoid Zc and Zc avoids Xc, Yc. Consider the gad-

get (F, L{Xc,Yc},{Zc}, (x3, y3)), obtained by applying Lemma 6.3.5Lemma 6.3.5, and note that this is a

list-{u0a, u0b, u1c}-gadget. It is straightforward to observe (see Figure 6.2Figure 6.2) that the com-

position of (P, L, (x1, y2)) and (F, L{Xc,Yc},{Zc}, (x3, y3)) is an R(c)-gadget (Pc, L, (xc, yc)).

This concludes the construction of the OR3-gadget and the proof of the lemma.

115

u0

u1

u0

u1

au0

u1
x2 = y1 y2 = x3

{u0u0, u1u1, u1uk+1}

x1 y3

{u0u0, u1u0, uk+1u1} {u0a, u1b, u1c}

b
c

u0
u1
uk+1

u0
u1
uk+1

Figure 6.2: The composition of gadgets (P1, L{A},{B1,B2}, (x1, y1)),(P2, L{A1,A2},{B}, (x2, y2))
and (F, L{Xc,Yc},{Zc}, (x3, y3)) that together creates a list-R(c)-gadget. Thick black lines
denote the possible mappings of white vertices to vertices of H.

The last ingredient needed for the proof of Lemma 6.3.4Lemma 6.3.4 is the construction of distin-

guisher gadgets.

Definition 6.3.7 (Distinguisher). Let H be a bipartite graph, let S ⊆ V (H), and let

(α, β) ∈ C(O), such that {α, β}∪S is contained in one bipartition class of H. Let a, b ∈ S.

Consider a binary relation Da/b ⊆ S × {α, β} such that (a, α), (b, β) ∈ Da/b, (a, β) /∈ Da/b

and for every c ∈ S \ {a, b} we have {(c, α), (c, β)} ∩ Da/b ̸= ∅. A relation Da/b is called

an (a, b)-distinguishing relation. A list-Da/b-gadget is called a distinguisher gadget.

Distinguisher gadgets will be constructed using the following lemma, whose proof is

postponed to Section 6.3.2.

Lemma 6.3.8. Let H be a connected, bipartite, undecomposable graph that contains an

obstruction O, and let (α, β) ∈ C(O). Let S ⊆ V (H) be an incomparable set of k ⩾ 2

vertices, contained in the same bipartition class as α, β. Let a and b be two distinct

vertices of S. For each v ∈ S there exists a walk Kv, of positive length, satisfying the

following properties:

(1) Kv is a v-α-walk or a v-β-walk,

(2) Ka is an a-α-walk and Kb is a b-β-walk,

(3) all walks terminating at α avoid all walks terminating at β. In particular, all walks

have equal length.

By Lemma 6.3.5Lemma 6.3.5, for any a, b ∈ S, the existence of distinguisher gadgets for some

distinguishing relation Da/b follows directly from Lemma 6.3.8Lemma 6.3.8 applied for A being the set

of walks terminating at α, and B being the set of walks terminating at β.

116

Corollary 6.3.9. Let H be a connected, bipartite, undecomposable graph with an obstruc-

tion O and let (α, β) ∈ C(O). Let S ⊆ V (H) be an incomparable set contained in the

same bipartition class as α and β. Then for every pair (a, b) of distinct elements of S

there exists a list-Da/b-gadget for some distinguishing relation Da/b. □

Now Lemma 6.3.4Lemma 6.3.4 is a consequence of Lemma 6.3.6Lemma 6.3.6 and Corollary 6.3.9Corollary 6.3.9.

Proof of Lemma 6.3.4Lemma 6.3.4. If t = 1, then consider a graph F that consists of one vertex v

with list L(v) = S. Clearly, (F, L, {v}) is a list-S-gadget. Thus assume that t ⩾ 2.

Let X and Y be the bipartition classes of H. Recall (Theorem 5.1.6Theorem 5.1.6) that since H is

not the complement of a circular-arc graph, then it contains an obstruction O. Let

C(O) = {(α, β), (α′, β′)}, without loss of generality assume that α, β ∈ X and α′, β′ ∈ Y .

Let R = (S1×. . .×St)\S = {R1, . . . , Rq}, where for each k ∈ [q] we have Rk = (rk
1 , . . . , rk

t).

For each Si we enumerate Si = {si
1, . . . , si

pi
}, where pi = |Si|.

We construct the desired gadget (F, L, (x1, . . . , xt)) in three steps as follows.

Step I. In this step, for every i ∈ [t] and j ∈ [pi] we construct a list-I(i, j)-gadget

(Ii,j, L, (xi,j, ci,j)), where I(i, j) ⊆ Si × {α, β} is a binary relation such that:

• (si
j, β) ∈ I(i, j),

• (si
j, α) /∈ I(i, j), and

• for every j′ ̸= j we have that (si
j′ , α) ∈ I(i, j).

We first assume that Si ⊆ X. For every j′ ∈ [pi] − {j} we call Corollary 6.3.9Corollary 6.3.9 to obtain a

list-Dsi
j/si

j′
-gadget (Dj/j′ , L, (xj/j′ , yj/j′)). We identify the vertices xj/j′ , for all j′ ∈ [pi] \

{j}, into a single vertex xi,j, and introduce a new vertex c′
i,j. Next, we use Lemma 6.3.6Lemma 6.3.6

to construct a list-ORpi
-gadget and identify its pi interface vertices with distinct elements

of {c′
i,j} ∪ {yj/j′ | j ̸= j′}. This completes the construction of (Ii,j, L, (xi,j, ci,j)), where

ci,j = c′
i,j.

Indeed, consider a homomorphism h : (Ii,j, L) → H. If h(xi,j) = si
j, then, for every

j′ ∈ [pi] \ {j} the list-Dsi
j/si

j′
-gadget forces h(yj/j′) = α, so the list-ORpi

-gadget forces

h(ci,j) = β. Thus, (si
j, α) /∈ I(i, j). Moreover, by the properties of a distinguisher, there

exists a homomorphism that maps xi,j to si
j and every yj/j′ to α. By the properties of the

ORpi
relation, this can be extended to the remaining vertices of the list-ORpi

-gadget so

117

that ci,j is mapped to β. Thus, (si
j, β) ∈ I(i, j). Last, if h(xi,j) = si

j′ for some j′ ̸= j, then

we can have h(yj/j′) = β and hence also we can have h(ci,j) = α. Hence, (si
j′ , α) ∈ I(i, j).

Therefore, the gadget constructed in this case satisfies the desired properties.

If Si ⊆ Y , we analogously use Corollary 6.3.9Corollary 6.3.9 and Lemma 6.3.6Lemma 6.3.6 to construct a list-

I ′(i, j)-gadget (I ′
i,j, L, (xi,j, c′

i,j)), where I ′(i, j) ⊆ Si × {α′, β′} is a relation such that:

• (si
j, β′) ∈ I ′(i, j),

• (si
j, α′) /∈ I ′(i, j), and

• for every j′ ̸= j we have that (si
j′ , α′) ∈ I ′(i, j).

Then we create Ii,j by adding a vertex ci,j with list {α, β} and making it adjacent to c′
i,j.

Recall that αα′, ββ′ ∈ E(H), but αβ′, α′β /∈ E(H), hence we obtain the desired gadget.

Step II. In this step, for every tuple j = (j1, . . . , jt) ∈ [p1] × . . . × [pt], we construct a

list-J(j)-gadget (Jj, L, (xj
1, . . . , xj

t)), where J(j) ⊆ S1 × . . . × St is the relation in which:

• (s1
j1 , . . . , st

jt
) /∈ J(j),

• for any (s′
1, . . . , s′

t) ∈ S1 × . . . × St \ {(s1
j1 , . . . , st

jt
)}, it holds that (s′

1, . . . , s′
t) ∈ J(j).

For every i ∈ [t], we introduce a list-I(i, ji)-gadget, constructed in previous step, with

interface vertices (xj
i , ci,ji

). Then we call Lemma 6.3.6Lemma 6.3.6 to introduce a NANDt-gadget. We

identify its interface vertices with vertices ci,ji
(in arbitrary order). This completes the

construction of (Jj, L, (xj
1, . . . , xj

t)).

Suppose that there is a list homomorphism h : (Jj, L) → H such that h(xji
) = si

ji

for every i ∈ [t]. By the properties of I(i, j)-gadget, this implies that h(ci,ji
) = β for

every i ∈ [m]. This in turn contradicts the fact that ci,ji
are the interface vertices of a

NANDm-gadget, thus (s1
j1 , . . . , st

jt
) /∈ J(j). On the other hand, if (s′

1, . . . , s′
t) ∈ S1 × . . . ×

St \ {(s1
j1 , . . . , st

jt
)}, there exists i ∈ [t] such that s′

i ̸= si
ji

. We define h : (Jj, L) → H as

follows. Let h : (Ii,ji
, L) → H be such that h(xj

ji
) = s′

i and h(ci,j) = α, and for every

i′ ̸= i, let h : (Ii′,ji′ , L) → H be such that h(xji′) = si′
ji′ and h(ci′,j) = β. The existence

of such homomorphisms follows from the properties of I-gadgets. Now since at least one

interface vertex of the list-NANDt-gadget, i.e., ci,ji
is mapped to α we can extend the

homomorphism to the list-NANDt-gadget. Therefore J(j) satisfies the desired properties.

118

γ
α

α

β

α

β

α

βx2/1 = x1,2 y2/1 c2,1

Dγ/α OR2

α α′

γ

β′β

γ′

γ
α

α

β

α

β

γ′

β′

α

β

α

βx
(2,1)
1 = x1,2 x

(2,1)
2 = x2,1c1,2 c2,1

I(1, 2) I(2, 1)NAND2

= x2 = x1

Figure 6.3: An example of gadgets built as in the proof of Lemma 6.3.4Lemma 6.3.4. Here, H = C6,
(upper right) X = {α, γ, β}, X = {α′, β′, γ′}, S = {(α, γ′), (α, β′), (γ, β′)} and R =
{(γ, γ′)}. A list-I(1, 2)-gadget (upper left) and a list-J(2, 1)-gadget which is the same as
list-S-gadget (bottom).

Step III. Finally we construct a list-S-gadget. For every j = (j1, . . . , jt) such that

(s1
j1 , . . . , st

jt
) ∈ R we introduce a list-J(j)-gadget with interface vertices (xj

j1 , . . . , xj
jt

). For

every i ∈ [t] and every suitable j we identify all vertices xj
ji

into a single vertex xi. This

completes the construction of (F, L, (x1, . . . , xt)).

Now observe that if there exists a list homomorphism h : (F, L) → H such that

(h(x1), . . . , h(xt)) = (s1
j1 , . . . , st

jt
) ∈ R, this is a contradiction with the first property

of the list-J(j)-gadget for j = (j1, . . . , jt). On the other hand, if (s1
j1 , . . . , st

jt
) /∈ R,

function h(xi) = si
ji

can be extended to every list-J-gadget we introduced, so there exists

a homomorphism h : (F, L) → H such that (h(x1), . . . , h(xt)) = (s1
j1 , . . . , st

jt
). This

concludes the proof.

An example of gadgets built as in the proof of Lemma 6.3.4Lemma 6.3.4 is depicted in Figure 6.3Figure 6.3.

Constructing walks All that remains to complete the proof of Theorem 6.3.2Theorem 6.3.2 is to

show Lemma 6.3.8Lemma 6.3.8. For that, we need a series of technical lemmas.

We first aim to show Lemma 6.1.1Lemma 6.1.1, i.e., that for any two incomparable vertices s, v in

the same bipartition class X of H, and a third vertex t ∈ X, there exists a vertex q ∈ X

(possibly equal to s or v) such that we can either construct walks from s to t and from

v to q, or walks from v to t and from s to q, which satisfy certain avoiding conditions.

However, due to some corner cases, the proof is complicated, thus we split it into three

steps (Lemma 6.3.10Lemma 6.3.10, Lemma 6.3.11Lemma 6.3.11, and finally the proof of Lemma 6.1.1Lemma 6.1.1).

Then, in the next three lemmas (Lemma 6.3.12Lemma 6.3.12, Lemma 6.3.13Lemma 6.3.13 and Lemma 6.3.14Lemma 6.3.14) we

119

show how we can use an obstruction in H to construct walks that avoid each other. Last,

in Lemma 6.3.15Lemma 6.3.15 we show a special case of Lemma 6.3.8Lemma 6.3.8, and then prove Lemma 6.3.8Lemma 6.3.8 in

full generality.

Lemma 6.3.10. Let H be a connected bipartite graph with bipartition classes X and Y .

Let s, v ∈ X be incomparable vertices and let s′ ∈ N(s) \ N(v), v′ ∈ N(v) \ N(s). Let

S ⊆ N(s, s′, v, v′) be non-empty. Let U be the set of vertices reachable from {s, v} in

H − S.

Then either H has a bipartite decomposition (D, N, R) such that {s, v, s′, v′} ⊆ D and

S ⊆ N or there exist y ∈ S and x ∈ U (both in the same bipartition class) and two pairs

of walks of length ℓ ⩾ 1 such that either

(1.) A, A′ : s → y and B, B′ : v → x, or

(2.) A, A′ : v → y and B, B′ : s → x,

and A avoids B, B′ avoids A′. All four walks are entirely contained in S ∪ U and for

every i ∈ [ℓ + 1] it holds that {A, B}i ̸⊆ S.

Furthermore one of the following holds:

a) x ∈ {v, v′} in case (11.) and x ∈ {s, s′} in case (22.), or

b) walks B, B′ are entirely contained in U .

The decomposition of H or the walks A, A′, B, B′ can be constructed in time polynomial

in |V (H)|.

Proof. We split the proof into three cases.

Case 1: There exists a ∈ N(s, v) and b ∈ S∩X such that ab /∈ E(H). By symmetry

assume that a ∈ N(s). If b ∈ N(v′), we set x = s, y = b, and define A = A′ = (v, v′, b)

and B = (s, s′, s), B′ = (s, a, s), obtaining walks as in the statement (22.) aa). On the other

hand, if b /∈ N(v′), then necessarily b ∈ N(s′). Then we take x = v, y = b, and define

A = A′ = (s, s′, b), and B = B′ = (v, v′, v), which satisfy statement (11.) aa).

120

Case 2: There exists a ∈ S ∩ Y and b ∈ N(s′, v′) such that ab /∈ E(H). By

symmetry assume that b ∈ N(s′). If a ∈ N(v), then we set x = s′, y = a, and define

A = (v, a), B = (s, s′), A′ = (v, v′, v, a), and B′ = (s, s′, b, s′), obtaining statement (22.)

aa). On the other hand, if a /∈ N(v), then a ∈ N(s). In this case we take x = v′, y = a,

and define A = A′ = (s, a) and B = B′ = (v, v′), obtaining statement (11.) aa).

Case 3: S is bipartite-complete to N [s, s′, v, v′]. Note that this is happens if and

only if neither Case 1 nor Case 2 holds. In particular, H[S] is a biclique.

Let K be the set of all vertices w in U such that there exists sw ∈ S belonging to the

other bipartition class than w such that wsw /∈ E(H). Since we are in Case 3, we observe

that K ∩ N [s, v, s′, v′] = ∅.

If K = ∅, then U is bipartite-complete to S and there are no edges between U and

H − (S ∪ U), so
(
U, S, V (H) \ (S ∪ U)

)
is a bipartite decomposition of H that satisfies

the statement of the lemma. Therefore, we can assume that K ̸= ∅. For contradiction,

suppose that the lemma does not hold and H is a counterexample with the minimum

number of vertices, i.e., for any graph H ′ with strictly fewer vertices and any choice of

four vertices and a set, satisfying the assumptions of the lemma, the desired decomposition

or walks exist.

Let S̃ be a minimal {s, s′, v, v′}-K-separator in H[U] contained in N(s, v, s′, v′), and

let Ũ be the set of vertices reachable from {s, s′, v, v′} in H[U] − S̃. Note s, s′, v, v′ ∈ U ,

which in particular implies that the vertices s, v are incomparable in H[U]. Also, Ũ ∪ S̃

is bipartite-complete to S, and the set S̃ is contained in N(s, s′, v, v′) ∩ U .

Observe that the graph H[U], vertices s, s′, v, v′, and the sets Ũ and S̃ satisfy the

assumptions of the lemma (where the roles of U and S are played, respectively, by Ũ and

S̃). Since S ̸= ∅ and S ⊆ V (H) − U , we obtain that H[U] has strictly fewer vertices than

H. So, by minimality of H, Lemma 6.3.10Lemma 6.3.10 holds for H[U].

Claim 6.3.10.1. If H[U] has a decomposition (D̃, Ñ , R̃), where {s, s′, v, v′} ⊆ D̃ and

S̃ ⊆ Ñ , then H has a decomposition (D, N, R) such that {s, v, s′, v′} ⊆ D and S ⊆ N .

Proof of Claim. Recall that K ∩ N [s, v, s′, v′] = ∅. By the properties of decomposition,

Ñ ⊆ N(s, v, s′, v′), so Ñ is disjoint with K. Observe that (D̃ \ K, Ñ, R̃ ∪ K) is also a

decomposition of H[U] such that {s, s′, v, v′} ⊆ D̃ and S̃ ⊆ Ñ . Thus, we can assume that

D̃ ∩ K = ∅.

121

Note that Ñ is bipartite-complete to S, implying that S ∪ Ñ is a biclique. Moreover,

since D̃ ∩ K = ∅, so by definition of K, D̃ is bipartite-complete to S ∪ Ñ , and there

are no more vertices in H adjacent to D̃. Then (D̃, Ñ ∪ S, V (H) \ (D̃ ∪ Ñ ∪ S)) is the

decomposition of H, such that s, s′, v, v′ ∈ D̃ and S ⊆ (Ñ ∪ S). ⌟

Thus we can assume that there is no decomposition of H[U] that satisfies the statement

of Claim 6.3.10.1Claim 6.3.10.1, and there exist x̃ ∈ Ũ , ỹ ∈ S̃ and one of the following quadruples of

walks:

C, C ′ : s → ỹ and D, D′ : v → x̃ (statement (11.)), or

C, C ′ : v → ỹ and D, D′ : s → x̃ (statement (22.)),

where C avoids D and D′ avoids C ′, all four walks are contained in Ũ ∪ S̃, andfor every

i ∈ [||C||] we hafe {C, D}i ̸⊆ S̃. We show that in this case we can obtain the desired walks

in H. Let us consider the first situation (statement (11.)), i.e., that we obtained walks

C, C ′ : s → ỹ and D, D′ : v → x̃ (the other one is symmetric).

For a walk V by V⊢ we denote V with the last vertex removed. By minimality of S̃

there exists a walk P : ỹ → w, where w ∈ K and no vertex from P except ỹ is in S̃. This

means that no vertex from P , except for the first vertex, is adjacent to any vertex from

Ũ , so, in particular, w is non-adjacent to x̃. Observe that since K ∩ S̃ = ∅ we must have

||P|| ⩾ 1. Let w• be the last vertex of P⊢. Note that we may have w• = ỹ.

Let x̃• be the last vertex of (D′)⊢. By Observation 5.1.2Observation 5.1.2 applied to D′, C ′ we know

that x̃• is adjacent to x̃ and non-adjacent to ỹ. Moreover, since all vertices of D′ are in

Ũ ∪ S̃, we note that x̃• is adjacent to all vertices from the appropriate bipartition class of

S.

Now we will separately consider two subcases, depending whether the call for H[U]

resulted in the statement (11.) aa) or (11.) bb).

Case 3 a): the call for H[U] resulted in the statement (11.) aa). This means that

x̃ ∈ {v, v′}.

If ||P|| = 1, i.e., P = (ỹ, w), then we set x = ỹ, y = sw, and define:

A = D′ ◦ (x̃, x̃•, sw) A′ = D ◦ (x̃, x̃•, sw)

B = C ′ ◦ (ỹ, w, ỹ) B′ = C ◦ (ỹ, w, ỹ).
(6.3)

122

Note that sw ∈ S is adjacent to x̃• ∈ Ũ ∪ S̃, as in this case ỹ, x̃, sw are in one bipartition

class, while x̃• is in the other one, and Ũ ∪ S̃ is bipartite-complete to S. Observe that

since C and C ′ are contained in H[U], the walks satisfy the statement (22.) bb).

So let us assume that ||P|| > 1, i.e., w• ̸= ỹ. Define x̃′ in a way that {x̃, x̃′} = {v, v′}.

We define walks

R′ = (x̃, x̃•, x̃) ◦ (x̃, x̃′, x̃, . . . , x̃′′)

R = (x̃, x̃′, x̃) ◦ (x̃, x̃′, x̃, . . . , x̃′′),

such that ||P|| = ||R|| = ||R′||, where x̃′′ is either x̃ or x̃′ (i.e., either v or v′), depending

on the parity of P . Note that x̃′′ is in the same bipartition class as w. We observe that P

avoids R′: recall that ỹ is non-adjacent to x̃•, and all other vertices of P are in U \(S̃ ∪Ũ),

and thus they are non-adjacent to {v, v′} = {x̃, x̃′}. Moreover, the latter implies that R

avoids P . We set x = w•, y = sw and:

A = D′ ◦ R ◦ (x̃′′, sw) A′ =D ◦ R′ ◦ (x̃′′, sw)

B = C ′ ◦ P ◦ (w, w•) B′ =C ◦ P ◦ (w, w•).
(6.4)

Recall that x̃′′ ∈ {v, v′} ⊆ Ũ and as S is bipartite-complete to Ũ , we have that x̃′′ is

adjacent to sw ∈ S. Moreover, we observe that A avoids B and B′ avoids A′, as w• is in

U \ (S̃ ∪ Ũ) and thus is non-adjacent to x̃′′ ∈ Ũ . It is straightforward to verify that the

constructed walks satisfy the statement (22.) bb).

Case 3 b): the call for H[U] resulted in the statement (11.) bb). This means that

D, D′ are entirely contained in Ũ , in particular x̃, x̃• ∈ Ũ . We define R = (x̃, x̃•, x̃, . . . , x̃′′)

so that ||R|| = ||P||, where x̃′′ is either x̃ or x̃•, depending on the parity of ||P||. Note

that P and R avoid each other, as ỹ is non-adjacent to x̃•, and no vertex from P , except

for ỹ, is adjacent to any vertex of Ũ .

We set x = w•, y = sw and:

A = D′ ◦ R ◦ (x̃′′, sw), A′ =D ◦ R ◦ (x̃′′, sw),

B = C ′ ◦ P ◦ (w, w•), B′ =C ◦ P ◦ (w, w•).
(6.5)

Similarly to the case of walks constructed in (6.46.4), we can observe that A avoids B and

123

B′ avoids A′. Note that this works also for the case w• = ỹ, that is, if ||P|| = 1. Then

the walks from (6.5)(6.5) are as follows:

A = D′ ◦ (x̃, x̃•, sw), A′ =D ◦ (x̃, x̃•, sw),

B = C ′ ◦ (ỹ, w, ỹ), B′ =C ◦ (ỹ, w, ỹ),

Observe that in (6.5)(6.5) we used only vertices from U (except sw) and thus walks B, B′

are entirely contained in U . Moreover, for every i ∈ [||A||] it holds that {A, B}i ̸⊆ S.

Thus we obtain the statement (22.) bb) of the lemma.

Finally, the proof is clearly constructive, so the claim about the polynomial-time

algorithm follows easily.

Using Lemma 6.3.10Lemma 6.3.10 we can derive the following statement.

Lemma 6.3.11. Let H be a connected, undecomposable, bipartite graph with bipartition

classes X, Y and let s, v ∈ X be incomparable vertices. Let T ⊆ X be a non-empty set

of vertices that are incomparable with both s, v. Then there exist t ∈ T and two pairs of

walks:

1. A, A′ : s → t and B, B′ : v → v, or

2. A, A′ : s → s and B, B′ : v → t,

such that A avoids B and B′ avoids A′. Walks A, A′, B, B′ can be constructed in time

polynomial in |V (H)|.

Proof. Since s and v are incomparable, there exist v′ ∈ N(v)\N(s) and s′ ∈ N(s)\N(v).

Case 1: there exists t ∈ T and either a vertex t′
v ∈ N(t)\N(v), which is adjacent

to s, or a vertex t′
s ∈ N(t) \ N(s), which is adjacent to v. Assume, by symmetry,

that t′
v exists. Let v′

t ∈ N(v)\N(t), it exists since v and t are incomparable. Then we can

set: A = A′ = (s, t′
v, t), B = (v, v′, v) and B′ = (v, v′

t, v). It is straightforward to verify

that A avoids B and B′ avoids A′. The case that t′
s exists is symmetric.

Case 2: for every t ∈ T , every neighbor of t is either adjacent to both s, v or

non-adjacent to both. Observe that this implies that T ∩ N(s′, v′) = ∅: otherwise, if

there is any t ∈ T adjacent to one of s′, v′, say s′, then s′ must be adjacent to both s, v,

which contradicts its definition.

124

Let S be a minimal {s, v, s′, v′}-T -separator contained in N(s, v, s′, v′) and let U be

the set of vertices reachable from {s, s′, v, v′} in H − S. Observe that the graph H,

vertices s, s′, v, v′, and the set S satisfy the assumptions of Lemma 6.3.10Lemma 6.3.10. So, since H

is undecomposable, by Lemma 6.3.10Lemma 6.3.10, there are y ∈ S and x ∈ U , and walks C, C ′ : s →

y, D, D′ : v → x (statement (11.)) or C, C ′ : v → y, D, D′ : s → x (statement (22.)), such

that C avoids D and D′ avoids C ′.

Suppose that calling Lemma 6.3.10Lemma 6.3.10 resulted in statement (11.), i.e., the obtained walks

are C, C ′ : s → y and D, D′ : v → x (the other case is symmetric). Let x• be the last

vertex on (D′)⊢, note that it is adjacent to x and, by Observation 5.1.2Observation 5.1.2, non-adjacent to

y. By minimality of S there is t ∈ T and a y-t-path P of length at least 1, whose every

vertex, except for y, is in V (H) \ (S ∪ U). This implies that y is the only vertex of P with

a neighbor in U . Let us consider two subcases.

Case 2a: calling Lemma 6.3.10Lemma 6.3.10 resulted in statement (11.) aa). This means that

x ∈ {v, v′}. Let us define x′, such that {x, x′} = {v, v′}. If ||P|| > 1, we define R =

(x, x•, x, x′, x, . . . , v) and R′ = (x, x′, x, x′, x, . . . , v), such that ||R|| = ||R′|| = ||P||.

Recall that v and t are in the same bipartition class, so the last vertex of both walks is

indeed v. Observe that P avoids R and R′ avoids P , as x• is non-adjacent to y, and

every vertex of P , except y, is non-adjacent to every vertex of U , so, in particular, to

{x, x′} = {v, v′}. We set:

A =C ◦ P , A′ = C ′ ◦ P ,

B =D ◦ R, B′ = D′ ◦ R′,

which are walks as in the statement (11.). And if ||P|| = 1, i.e. P = (y, t), then x = v′ since

x and y are in the same bipartition class. We can define R = (v′, x•, v′, v), R′ = (v′, v, v′, v)

and P ′ = (y, t, t′, t), where t′ is a vertex in N(t) \ N(s, v) (note that it exists, since t is

incomparable with s, v and every vertex in N(t) ∩ N(s, v) is adjacent to both s, v by the

definition of Case 2). Note that R′ avoids P ′ and P ′ avoids R. We set:

A =C ◦ P ′, A′ = C ′ ◦ P ′,

B =D ◦ R, B′ = D′ ◦ R′,

125

and obtain walks as in the statement (11.).

Case 2b: calling Lemma 6.3.10Lemma 6.3.10 resulted in statement (11.) bb). This means that

walks D, D′ are entirely contained in U . Let t′ be a neighbor of t such that t′ /∈ S ∩ Y ,

again it exists in this case (recall that S ∩ Y ⊆ N(s, v)). We set:

A =C ◦ P∗, A′ =C ′ ◦ P∗,

B =D ◦ D∗, B′ =D′ ◦ D∗,

where P∗ := P ◦ (t, t′, . . . , t) and D∗ := D′ ◦ (v, v′, . . . , v) are defined in a way that

||P∗|| = ||D∗|| := max(||P||, ||D′||) (basically, these walks play the same role as P and D′,

but extra padding added to one of them ensures they have the same length). Observe that

D∗ is entirely contained in U and thus it avoids P∗ whose only vertex adjacent to U is the

first one. Moreover P∗ avoids D∗, since the first vertex of P is y and it is non-adjacent

to x•, which is the second vertex on D∗. Thus A avoids B and B′ avoids A′ and we have

obtained statement (11.).

Again, note that walks A, A′, B, B′ can be constructed in time polynomial in |V (H)|.

We have all tools to prove Lemma 6.1.1Lemma 6.1.1 that we recall here.

Lemma 6.1.1. Let H be a connected, bipartite undecomposable graph with bipartition

classes X, Y , let {s, v} ∈ X be incomparable, and let t ∈ X. Then there exist a vertex

q ∈ X and two pairs of walks:

1. P , P ′ : s → t and Q, Q′ : v → q, or

2. P , P ′ : s → q and Q, Q′ : v → t,

such that P avoids Q and Q′ avoids P ′. Moreover, if t is incomparable with at least one

of s, v then q = v in the first case and q = s in the other.

Finally, given a bipartite graph H and s, v, t ∈ X, in time polynomial in |V (H)| we

can either find the desired walks or a decomposition of H.

Proof of Lemma 6.1.1Lemma 6.1.1. Observe that if t is incomparable with both s, v, we can obtain

the desired walks by applying Lemma 6.3.11Lemma 6.3.11 for s, v, and T = {t}.

Now let us assume that t is incomparable with exactly one of s, v, say v (the other case

is symmetric) and let t′
v be a vertex in N(t) \ N(v) and let v′

t be a vertex in N(v) \ N(t).

126

Since s and v are incomparable, there are v′
s ∈ N(v) \ N(s) and s′

v ∈ N(s) \ N(v). Since

t is comparable with s, we either have N(t) ⊆ N(s) or N(s) ⊆ N(t). If N(t) ⊆ N(s), we

observe that t′
v must be adjacent to s, and v′

s must be non-adjacent to t since v′
s /∈ N(s).

Then we set q = v, P = P ′ = (s, t′
v, t), and Q = Q′ = (v, v′

s, v). On the other hand, if

N(s) ⊆ N(t), we observe that s′
v must be adjacent to t and v′

t must be non-adjacent to s.

Then we set q = v, P = P ′ = (s, s′
v, t), and Q = Q′ = (v, v′

t, v).

So from now we can assume that t is comparable with both s, v. Observe that it

implies that either N(s, v) ⊆ N(t), or N(t) ⊆ N(s) ∩ N(v). Note that the other cases

are not possible: if we have, say, N(v) ⊆ N(t) and N(t) ⊆ N(s), then N(v) ⊆ N(s),

a contradiction. Observe that if there is s′ ∈ N(s) \ N(v) and v′ ∈ N(v) \ N(s), such

that t is adjacent to at least one of s′, v′, then we can set S := {t} ⊆ N(s, s′, v, v′) and,

by the assumption of H, it has no decomposition. Thus we can call Lemma 6.3.10Lemma 6.3.10 for

vertices s, s′, v, v′ and the set S = {t}. Since t is the only vertex of S, we obtain a vertex

q, reachable from {s, v} in H − {t}, and walks P , P ′ : s → t and Q, Q′ : v → q, or

Q, Q′ : v → t and P , P ′ : s → q, such that P avoids Q and Q′ avoids P ′.

So it only remains to consider the case in which t is non-adjacent to every vertex in(
N(s) \ N(v)

)
∪
(
N(v) \ N(s)

)
. Choose arbitrary s′ ∈ N(s) \ N(v) and v′ ∈ N(v) \ N(s).

Observe that by the case we are considering, we have N(t) ⊆ N(s) ∩ N(v), which implies

that N(t) ⊆ N(s, s′, v, v′). We call Lemma 6.3.10Lemma 6.3.10 for H, vertices s, s′, v, v′, and the set

S = N(t). We obtain vertices y ∈ N(t) and x ∈ U , where U is the set of vertices reachable

from {s, v} in H −S, and walks A, A′ : s → y, B, B′ : v → x or A, A′ : v → y, B, B′ : s → x

of length at least one, such that A avoids B and B′ avoids A′. Let q be the last vertex

on (B′)⊢, note that q is adjacent to x and non-adjacent to y. We also have that x is non-

adjacent to t, since all neighbors of t are in S. If we obtain walks A, A′ : s → y, B, B′ :

v → x then we set:

P = A ◦ (y, t), P ′ = A′ ◦ (y, t),

Q = B ◦ (x, q), Q′ = B′ ◦ (x, q),

127

and if we obtain walks A, A′ : v → y, B, B′ : s → x, then we set:

P = B′ ◦ (x, q), P ′ = B ◦ (x, q),

Q = A′ ◦ (y, t), Q′ = A ◦ (y, t).

It is straightforward to verify that in both cases P avoids Q and Q′ avoids P ′.

Observe that the proof is again constructive, so the claim about a polynomial-time

algorithm follows.

Now, having proven Lemma 6.1.1Lemma 6.1.1, we analyze how our walks can reach the obstruction.

Lemma 6.3.12. Let H be a connected, undecomposable, bipartite graph containing an

obstruction O. Let (α, β) ∈ C(O), and let s be a vertex from the same bipartition class

as β but incomparable with it. Then there exist walks A, A′ : s → α and B, B′ : β → β,

such that A avoids B and B′ avoids A′.

Proof. We use Lemma 6.1.1Lemma 6.1.1 for s = α, v = β, and t = s to obtain walks P , P ′ : α → s and

Q, Q′ : β → β or P , P ′ : α → α and Q, Q′ : β → s, such that P avoids Q and Q′ avoids

P ′. In the first case, it is enough to take A = P ′, B = Q′, A′ = P , B′ = Q, since, by

Observation 5.1.2Observation 5.1.2, P ′ avoids Q′ and Q avoids P . In the second case, we use Lemma 6.1.1Lemma 6.1.1

again, now for s = s, v = β and t = α and obtain walks R, R′ : s → α and S, S ′ : β → β

or R, R′ : s → s and S, S ′ : β → α, such that R avoids S and S ′ avoids R′. In the first

case, we are done, as these are the walks we are looking for. In the second case we set

A =R ◦ Q ◦ Y ′, A′ = R′ ◦ Q′ ◦ Y ,

B =S ◦ P ◦ X ′, B′ = S ′ ◦ P ′ ◦ X ,

where X , X ′ : α → β and Y , Y ′ : β → α are obtained by Observation 5.1.9Observation 5.1.9.

In the next proof some constructions will depend on the bipartition class of a particular

vertex. To avoid considering cases separately, for two non-necessarily distinct vertices u

and u′, such that u′ ∈ N [u], we introduce a walk

E [u, u′] :=


(u, u′) if uu′ ∈ E(H),

(u) if u = u′.

128

Note that if sets {u, u′} and {v, v′} are non-adjacent (again, it might be that u = u′

or v = v′), then the walks E [u, u′] and E [v, v′] are clearly non-adjacent.

Lemma 6.3.13. Let H be a bipartite graph with an obstruction O. Let (α, β) ∈ C(O)

and let s ∈ V (H) be a vertex that belongs to the same bipartition class as α, β. Assume

that N(s) \ N(β) ̸= ∅ and dist(N [s] \ N(β),O) ⩽ 1. Then one of the following exists:

1. walks P : α → α, Q : s → α and R : β → β, such that P , Q avoid R,

2. walks P : α → α, Q : s → β and R : β → β, such that P avoids Q, R.

Proof. Let α′, β′ be the pair of vertices, such that C(O) = {(α, β), (α′, β′)}.

By Definition 5.1.7Definition 5.1.7 recall that edges αα′ and ββ′ are independent. First, we consider

some simple special cases separately. If sβ′ ∈ E(H), we obtain the statement (22.) by

setting

P =(α, α′α),

Q =(s, β′, β),

R =(β, β′, β).

So now sβ′ ̸∈ E(H), and if there exists s′ ∈ N(s) \ N(β) such that αs′ ∈ E(H) (in

particular when s is adjacent to α′), then we obtain the statement (11.) by setting

P =(α, α′, α),

Q =(s, s′, α),

R =(β, β′, β).

Thus we can assume that the cases above do not apply. Let us fix any s′ ∈ N(s) \ N(β)

for which dist({s, s′},O) ⩽ 1. Note that the edges αα′, ββ′, and ss′ are independent (i.e.,

they form an induced matching).

Case 1: there exists p ∈ N [s, s′] ∩ V (O) such that p ̸∈ N(α, α′). Clearly p ̸∈

{α, α′, β, β′}, as otherwise edges αα′, ββ′, ss′ would not be independent. This, in partic-

ular, cannot occur if O is isomorphic to C6, see Figure 6.4Figure 6.4 (left). Let s be an element of

{s, s′} which is a neighbor of p. Recall that since p, β ̸∈ N [α, α′], by Observation 5.1.8Observation 5.1.8,

129

αβ′

α′

β

αβ

α′

β′

Figure 6.4: The position of elements of C(O) when O is isomorphic to C6 (left) of C8
(right). Gray vertices indicate the possible position of vertices p and r in the Case 2 of
the proof of Lemma 6.3.13Lemma 6.3.13.

there exists a p-β-walk W [p, β] in O which is non-adjacent to {α, α′}. We define:

P := (α, α′, α, . . . , α),

Q := E [s, s] ◦ (s, p) ◦ W [p, β],

R := (β, β′, β, . . . , β),

in a way that ||P|| = ||R|| = ||Q||. Clearly P avoids R. Moreover, P avoids Q since

s, s′, p ̸∈ N [α, α′] and W [p, β] is non-adjacent to {α, α′}. We obtain the statement (22.).

Case 2: N [s, s′] ∩ V (O) ⊆ N(α, α′). It implies that dist({s, s′},O) = 1, as if {s, s′} ∩

V (O) ̸= ∅, then {s, s′} and {α, α′} would be adjacent. So there exists p ∈ N(s, s′) ∩

V (O) ∩ N(α, α′). Again, let s be an element of {s, s′} which is a neighbor of p and let

{α, α′} := {α, α′} such that αp ∈ E(H). Note that if p ̸∈ N(β, β′), we can set

P := (α, α′, . . . , α),

Q := E [s, s] ◦ (s, p, α) ◦ E [α, α]

R := (β, β′, . . . , β).

in a way that ||P|| = ||R|| = ||Q||. Then P , Q avoid R and we get the statement (22.).

Observe that if O is isomorphic to C8, then the above case applies; see Figure 6.4Figure 6.4 (right).

So we can assume that p ∈ N(s, s′) ∩ N(α, α′) ∩ N(β, β′). Let {β, β
′} := {β, β′},

such that βp ∈ E(H). If O is isomorphic to C6, then let r be the other vertex of O

which belongs to N(α, α′) ∩ N(β, β′) (r is uniquely determined, see Figure 6.4Figure 6.4 (left)). As

130

pr ̸∈ E(H), we define the walks that satisfy the statement (11.):

P := E [α, α] ◦ (α, p, α, α′) ◦ E [α′, α]

Q := E [s, s] ◦ (s, p, α, α′) ◦ E [α′, α],

R := E [β, β] ◦ (β, β
′
, r, β

′) ◦ E [β′
, β].

So finally consider the case that O is an asteroidal subgraph. We use the notation

introduced in Definition 5.1.4Definition 5.1.4. Then p ∈ W0,i for some i ∈ {1, 2k}, as all other vertices

of O are non-adjacent to α. Let {κ, κ′} = {uk+1, vk+1} if i = 1 or {κ, κ′} = {uk, vk} if

i = 2k, where κ′ and p are in the same bipartition class. Note that by the definition of

a special edge asteroid we know that the walk W0,i, and in particular p, is non-adjacent

to {κ, κ′}. Recall that the walk W [β, κ] given by Observation 5.1.8Observation 5.1.8 is non-adjacent to

{α, α′} = {u0, v0}. So, since we are in Case 2, we observe that s and s′ are non-adjacent

to {κ, κ′} and to W [β, κ], as otherwise we would have chosen p ∈ {κ, κ′} ∪ W [β, κ], such

that p ∈ N [s, s′] ∩ V (O) and p /∈ N(α, α′), ending up in Case 1. We set

P := (α, α′, . . . , α) ◦ E [α, α] ◦ (α, α′, α) ◦ E [α, α] ◦ (α, α′, . . . , α),

Q := (s, s′, . . . , s) ◦ E [s, s] ◦ (s, p, α) ◦ E [α, α] ◦ (α, α′, . . . , α),

R := W [β, κ] ◦ (κ, κ′, κ) ◦ W [κ, β],

so that the lengths of the subwalks in each aligned column are equal. Clearly, R is

non-adjacent to both P and Q, so we obtain the statement (11).

Lemma 6.3.14. Let H be a connected, undecomposable, bipartite graph with an obstruc-

tion O, let (α, β) ∈ C(O) and let s ∈ V (H) be a vertex that belongs to the same bipartition

class as β, but is incomparable with it. Then at least one of the following exists:

1. walks P : α → α, Q : s → α and R : β → β, such that P , Q avoid R,

2. walks P : α → α, Q : s → β and R : β → β, such that P avoids Q, R.

Proof. Let (α′, β′) be the pair of vertices, such that C(O) = {(α, β), (α′, β′)}. Let X, Y be

the bipartition classes of H, such that α, β ∈ X and α′, β′ ∈ Y . If dist(N [s]\N(β),O) ⩽ 1,

we are done by Lemma 6.3.13Lemma 6.3.13. Thus let us assume that dist(N [s] \ N(β),O) ⩾ 2. Fix

any s′ ∈ N(s) \ N(β) and observe that edges αα′, ββ′ and ss′ are independent. Let P be

131

the minimal {s}-O-separator contained in N(O). Let R be the set of vertices reachable

from s in H \ P and let Q be the set of vertices reachable from α, β in H \ P . Note that

V (O) ⊆ Q and s′ ∈ R, as it does not belong to N(O).

Case 1: there exists p ∈ P such that p ̸∈ N(α, β, α′, β′). Denote by Sp the s-p-walk,

such that S⊢
p is contained in R. The walk Sp exists, because P is a minimal s-O-separator.

Let p• ∈ R be the last vertex of S⊢
p (it is possible that p• = s).

If p ∈ P ∩ X, then clearly p ∈ N(O) \ N(β), so dist(N [p] \ N(β),O) ⩽ 1. Moreover,

N(p) \ N(β) is non-empty, because p• ∈ N(p) \ N(β). So by Lemma 6.3.13Lemma 6.3.13 we can

obtain walks T : α → α, U : p → λ for λ ∈ {α, β}, and V : β → β such that if U

is a p-α-walk, then T , U avoid V , and otherwise T avoids U , V . Then we define P :=

(α, α′, . . . , α) ◦ T , Q := Sp ◦ U , and R := (β, β′, . . . , β) ◦ V in a way that |P| = |Q| = |R|.

Clearly, Sp is non-adjacent to {α, α′, β, β′}, because S⊢
p ⊆ R and p ̸∈ N(α′, β′). Thus

walks P , Q, R satisfy statement (1.) or (2.), depending on the statement in the call of

Lemma 6.3.13Lemma 6.3.13.

Similarly, if p ∈ P ∩ Y , we observe that dist(N [p] \ N(β′),O) ⩽ dist(p,O) = 1 and

p• ∈ N(p) \ N(β′). Thus again we can use Lemma 6.3.13Lemma 6.3.13, but now for (α′, β′) ∈ C(O)

instead of (α, β). We obtain walks T : α′ → α′, U : p → λ′ for λ′ ∈ {α′, β′} and

V : β′ → β′, such that if U is a p-α′-walk, then T , U avoid V and otherwise T avoids U , V .

We define
P = (α, α′, . . . , α′) ◦ T ◦ (α′, α),

Q = Sp ◦ U ◦ (λ′, λ),

R = (β, β′, . . . , β′) ◦ V ◦ (β′, β),

where λ is the vertex in {α, β} ∩ N(λ′). Analogously like in the subcase when p ∈ P ∩ X,

we can verify that the statement of the lemma holds.

Case 2: for every p ∈ P it holds that p ∈ N(α, β, α′, β′). We use Lemma 6.3.10Lemma 6.3.10

for s = α, s′ = α′, v = β, v′ = β′ and S = P to obtain vertices y ∈ P and x ∈ Q

and walks A, A′ : α → y, B, B′ : β → x or A, A′ : β → y, B, B′ : α → x, such that A

avoids B, B′ avoids A′. Furthermore, for every i ∈ [||A|| + 1] we have {A, B}i ̸⊆ P and

A, A′, B, B′ ⊆ P ∪ Q.

Observe that we can assume that A, A′ : α → y, B, B′ : β → x. Indeed, observe that

otherwise we can consider walks X ◦ A, X ′ ◦ A′ : α → y and Y ◦ B, Y ′ ◦ B′ : β → x, where

132

X , X ′, Y , Y ′ are given by Observation 5.1.9Observation 5.1.9.

Now let Sy be the s-y-walk, such that S⊢
y is contained in R. Define A∗ := (α, α′, α)◦A,

B∗ := (β, β′, β) ◦ B, and S∗ := (s, s′, s) ◦ Sy. Observe that ||A∗|| = ||B∗|| and we have

α, α′ ∈ A∗, β, β′ ∈ B∗, and s, s′ ∈ S∗. Denote the consecutive vertices of these walks by

A∗ = (a1, . . . , aℓ), B∗ = (b1, . . . , bℓ), and S∗ = (s1, . . . , sm). Note that a1 = α, s1 = s, b1 =

β and aℓ = sm = y, bℓ = x, and A∗ avoids B∗.

Observe that there exist i ∈ [ℓ] and j ∈ [m − 1] such that aisj ∈ E(H) or bisj ∈ E(H)

(for example we have aℓ = sm = y, so aℓsm−1 ∈ E(H)). Take minimum such j and for

that j take minimum i.

Define Cα := (α, α′, . . . , α) and Cβ := (β, β′, . . . , β), so that ||Cα|| = ||Cβ|| = max(j −

i + 1, 0), and Cs := (s, s′, . . . , s), such that ||Cs|| := max(i − 1 − j, 0). Note that then three

walks Cα ◦ (a1, . . . , ai−1), Cβ ◦ (b1, . . . , bi−1), and Cs ◦ (s1, . . . , sj) have the same length.

We claim that only one of the edges aisj and bisj exists. Indeed, recall that for every

j ∈ [m − 1] we have sj ∈ R. On the other hand, walks A∗ and B∗ are contained in Q ∪ P .

So ai (or bi) can only be adjacent to sj if ai ∈ P (bi ∈ P). However, since for every

aproppriate j we have {A, B}j ̸⊆ P , we know that at most one of ai, bi may be in P .

If aisj ∈ E(H) and bisj ̸∈ E(H), we set

P = Cα ◦ (a1, . . . , ai−1) ◦ (ai−1, ai) ◦ (ai, . . . , aℓ) ◦ A′

Q = Cs ◦ (s1, . . . , sj) ◦ (sj, ai) ◦ (ai, . . . , aℓ) ◦ A′

R = Cβ ◦ (b1, . . . , bi−1) ◦ (bi−1, bi) ◦ (bi, . . . , bℓ) ◦ B′

Note that P = Cα ◦ A∗ ◦ A′ and R = Cβ ◦ B∗ ◦ B′. Observe that since s, s′ ∈ S∗, β, β′ ∈ B,

and by the definition of j and i, the subwalk Cs ◦ (s1, . . . , sj) of Q is non-adjacent to the

subwalk Cβ ◦ (b1, . . . , bi−1) of R.

By analogous arguments we can see that if bisj ∈ E(H) and aisj ̸∈ E(H), then for

P = Cα ◦ (a1, . . . , ai−1) ◦ (ai−1, ai) ◦ (ai+1, . . . , aℓ) ◦ A′

Q = Cs ◦ (s1, . . . , sj) ◦ (sj, bi) ◦ (bi+1, . . . , bℓ) ◦ B′

R = Cβ ◦ (b1, . . . , bi−1) ◦ (bi−1, bi) ◦ (bi+1, . . . , bℓ) ◦ B′

we have that P avoids Q and R.

Before we prove Lemma 6.3.8Lemma 6.3.8 in full generality, we consider a special case. We say that

133

an incomparable set S is strongly incomparable if for every v ∈ S there exists v′ ∈ N(v)

such that for every u ∈ S \ {v} it holds that uv′ ̸∈ E(H). Observe that then the edges

{vv′}v∈S are independent.

Lemma 6.3.15. Lemma 6.3.8Lemma 6.3.8 holds if we assume that S is strongly incomparable.

Proof. Let X, Y be the bipartition classes of H such that S = {x1, . . . , xk} ⊆ X, where

k ⩾ 2, x1 = a, x2 = b. To simplify the notation, if it does not lead to confusion, we write

Ki instead of Kxi
. Let (α′, β′) be the pair, such that C(O) = {(α, β), (α′, β′)}.

First, observe that all constructed walks must have even length, as they start and end

in the same bipartition class. Thus the only possibility to have walks of length less than

two that satisfy conditions (1)-(3) is if |S| = 2 and a = α and b = β. To avoid having

walks of length 0, in this case we return walks Ka = (α, α′, α) and Kb = (β, β′, β). So

from now on we do not need to worry about the length of the walks.

We prove the lemma by induction on k. Consider the base case that S = {a, b}.

By Lemma 6.1.1Lemma 6.1.1 used for s = a, v = b and t = β, we obtain a vertex q and walks

P , P ′ : a → β, Q, Q′ : b → q or P , P ′ : a → q, Q, Q′ : b → β, such that P avoids

Q and Q′ avoids P ′. Note that in both cases q must be incomparable with β (recall

Observation 5.1.2Observation 5.1.2), so we can use Lemma 6.3.12Lemma 6.3.12 for s = q to obtain A, A′ : q → α and

B, B′ : β → β, such that A avoids B and B′ avoids A′.

If P : a → q and Q : b → β, then clearly we can define Ka = P ◦A and Kb = Q◦B. On

the other hand, if P : a → β, Q : b → q, we define Ka = P ◦ B′ ◦ Y ′ and Kb = Q ◦ A′ ◦ X ′,

where X ′, Y ′ are given by Observation 5.1.9Observation 5.1.9. This proves the base case.

So now assume that S = {x1, . . . , xk} for k ⩾ 3 and x1 = a, x2 = b, and the lemma

holds for k − 1. Let {K̃i}k−1
i=1 be the set of walks given by the inductive call for the set

S \ {xk}, where K̃i = (di
1, . . . , di

ℓ). Let A be the set of walks K̃i terminating at α and let

B be the set of walks K̃i terminating at β. Clearly K̃a ∈ A and K̃b ∈ B.

As S is strongly incomparable, for every xi ∈ S there exists x′
i ∈ N(xi), such that the

edges in the set {xix
′
i}i∈[k] are independent.

Case 1: There is an edge between {xk, x′
k} and ⋃

i∈[k−1] K̃i. This means that there

is some j ∈ [ℓ] and p ∈ [k − 1] such that one of the edges xkdp
j or x′

kdp
j exists (note that

both edges cannot exist since H is bipartite). We choose the minimum such j, and for

this j, if only possible, we choose p such that K̃p ∈ B.

134

Observe that j > 1, because otherwise xpx′
k ∈ E(H), a contradiction with the defini-

tion of x′
k. Let xk ∈ {xk, x′

k} be the vertex for which xkdp
j ∈ E(H). Then we define

Ki :=


(xk, x′

k, . . . , xk) ◦ (xk, dp
j , . . . , dp

ℓ) if i = k,

K̃i if i ∈ [k − 1],

so that they have equal length. Denote the consecutive vertices of Kk by dk
1, . . . , dk

ℓ . It is

clear that these walks satisfy conditions (1) and (2), so we only need to prove the condition

(3). Assume that there exist walks Kq : xq → α and Kr : xr → β, such that Kq does not

avoid Kr. Note that by the inductive assumption this cannot happen if q, r ∈ [k − 1].

Thus either r = k or q = k.

Assume that r = k, i.e., Kk is an xk-β-walk. Note that this means that K̃p ∈ B. Let

c ⩾ 2 be the minimum index for which dq
c−1d

k
c ∈ E(H). If c < j, it means dq

c−1xk ∈ E(H)

or dq
c−1x

′
k ∈ E(H), which contradicts the minimality of j. If c ⩾ j, then dk

c = dp
c , so dq

c−1 is

adjacent to dp
c . Thus the xq-α-walk K̃q does not avoid the xp-β-walk K̃p, a contradiction.

So assume q = k, i.e., Kk is an xk-α-walk and thus K̃p ∈ A. Let c ⩾ 2 be the smallest

index for which dk
c−1d

r
c ∈ E(H). The argument is analogous: if c < j, then we have a

contradiction with the minimality of j. If c > j, then the xp-α-walk K̃p does not avoid

the xr-β walk K̃r, a contradiction. Finally, if c = j, recall that we would choose r instead

of p, as K̃r ∈ B and K̃p /∈ B. This completes the proof of this case.

Case 2: There are no edges between {xk, x′
k} and ⋃

i∈[k−1] K̃i. Then we use

Lemma 6.3.14Lemma 6.3.14 for α, β and s = xk to obtain walks P , Q and R and define

Ki :=



K̃i ◦ P if Ki ∈ A,

K̃i ◦ R if Ki ∈ B,

(xk, x′
k, . . . , xk) ◦ Q if i = k,

so that all walks have the same length ℓ′ − 1. We extend the naming of vertices of walks

Ki by denoting their consecutive vertices by di
1, . . . , di

ℓ′ , note that this is consistent with

previous notation, as for every i ∈ [k − 1] the walk K̃i is the prefix of Ki.

Again, properties (1) and (2) are straightforward, let us verify the property (3). As P

avoids R and for every q ∈ A and r ∈ B the walk Kq avoids Kr, by Observation 5.1.3Observation 5.1.3 we

135

know that the property (3) holds for all q, r ∈ [k − 1].

So we only need to consider two cases. First, assume that Q is an xk-α-walk (and

thus so is Kk), and P , Q avoid R. Suppose that there exists Kr ∈ B such that Kk does

not avoid Kr, i.e., there exists c ⩾ 2 such that dk
c−1d

r
c ∈ E(H). Recall that the number

of vertices in K̃r is ℓ. If c − 1 ⩾ ℓ, then Q does not avoid R, a contradiction. And if

c − 1 < ℓ, then dk
c−1 ∈ {xk, x′

k}, so K̃r is adjacent to xk or x′
k, a contradiction with the

assumption of the case.

Now assume that Q is an xk-β-walk and there exists q ∈ A such that Kq does not

avoid Kk, i.e., there exists c ⩾ 2 such that dq
c−1d

k
c ∈ E(H). The arguments which lead to

the contradiction are analogous—if c − 1 ⩾ ℓ, then P does not avoid Q, and if c − 1 < ℓ,

then K̃q is adjacent to xk or x′
k.

Now we are finally ready to prove Lemma 6.3.8Lemma 6.3.8.

Proof of Lemma 6.3.8Lemma 6.3.8. Let X, Y be the bipartition classes of H such that S = {x1, . . . , xk}

is contained in X, k ⩾ 2, x1 = a, x2 = b. Again, to simplify the notation, we sometimes

write Ki instead of Kxi
. Let a′ ∈ N(a) \ N(b) and b′ ∈ N(b) \ N(a). We define x′

1 := a′,

x′
2 := b′, and for every i ⩾ 3 such that xi /∈ N(a′) we choose x′

i to be any vertex from

N(xi) \ N(a); they exist, since S is incomparable.

Let U = {xi, x′
i : xi /∈ N(a′)}∪{a, a′}, and let C be the set of all connected components

of H \ N(a, a′). Note that xi and x′
i are always in the same component in C. Moreover,

there is a component Ca ∈ C, such that V (Ca) = {a, a′}, and a component Cb ∈ C, such

that b, b′ ∈ V (Cb). For each C ∈ C containing at least one vertex from U , we choose one

vertex u ∈ U ∩X∩V (C) and call it the representative of C. The representatives are chosen

arbitrarily, except that we choose b as the representative of Cb. Note that necessarily a

is the representative of Ca. Let R ⊆ S be the set of all vertices that are representatives

of components in C, clearly a, b ∈ R. For every vertex of C ∈ C, its representative is the

representative of C.

We claim that R is strongly incomparable. Indeed, note that for every xi ∈ R, the

vertex x′
i ∈ N(xi) is non-adjacent to every xj ∈ R \ {xi}. This is because if x′

i is adjacent

to some xj, then, since x′
i is non-adjacent to a, both xi, xj must be in the same component

in C, so they cannot both belong to R. So calling Lemma 6.3.15Lemma 6.3.15 for the set R and a, b, α, β

gives us the family of walks {K̃i}xi∈R.

136

Recall that the only vertices xi ∈ S for which x′
i is not defined yet are in (S ∩ N(a′)) \

{a}. Let us consider such xi, clearly it is adjacent to some vertices in U ∩ Y (at least a′).

If there is some xj ∈ U , such that:

• xi is adjacent to x′
j, and

• K̃r terminates at β, where xr is the representative of xj,

then we set x′
i := x′

j. Otherwise, we set x′
i := a′ (note that K̃a terminates at α). Now for

every xi we have defined x′
i, and always x′

i ∈ U ∩ Y . In particular, no x′
i, except for a′, is

adjacent to a.

Consider a vertex xi ∈ S and let C ∈ C be the component containing x′
i. Let xr be

the representative of C, and let Zi be an x′
i-xr-walk, contained in C. We define

Ki := (xi, x′
i) ◦ Zi ◦ (xr, x′

r, . . . , xr)︸ ︷︷ ︸
t vertices

◦ K̃r,

where t is chosen so that all Ki’s are of equal length. Let us denote by di
1, . . . , di

ℓ the

consecutive vertices of Ki, note that (di
t, di

t+1, . . . , di
ℓ) = K̃r and di

t = xr.

It is clear that all walks Ki terminate at α or β, and in particular Ka is an a-α-walk and

Kb is a b-β-walk, so the properties (1) and (2) hold. To prove the property (3), suppose

that there are p, q ∈ [k] such that Kp : xp → α does not avoid Kq : xq → β. So there exists

c ⩾ 2 such that dp
c−1 is adjacent to dq

c. Let xp′ , xq′ be, respectively, the representatives

of xp and xq. Clearly x′
p, x′

q ∈ R. Note that if c − 1 ⩾ t, then the xp′-α-walk K̃p′ does

not avoid the xq′-β-walk K̃q′ , a contradiction with the properties of the walks {K̃i}xi∈R

ensured by Lemma 6.3.15Lemma 6.3.15.

If 2 ⩽ c−1 < t, then there exists an xp′-xq′-path in H−N(a, a′), so they are in the same

connected component in C. Since each component in C has exactly one representative, we

obtain that p′ = q′ and thus and Kp and Kq both terminate in α or in β.

Finally, consider c = 2, which means that dp
1 = xp is adjacent to dq

2 = x′
q. There are

three possibilities: (i) xp, x′
q /∈ N(a, a′), or (ii) xp ∈ N(a′), or (iii) x′

q ∈ N(a). In case (i)

we observe that xp and x′
q are in the same connected component in C, which means that

xp′ = xq′ , so both walks Kp, Kq terminate at the same vertex. In case (ii), recall that when

choosing x′
p, we gave preference to vertices whose representative’s walk ends at β (see the

second condition in definition). Thus we would have chosen x′
p = x′

q, a contradiction.

137

Finally, in case (iii), recall that x′
q = a′. But since the representative of a′ is a, the walk

Kq terminates at α, a contradiction. This completes the proof of the lemma.

6.4 Lower bounds

It remains to show how to use Theorem 6.3.2Theorem 6.3.2 to derive Theorem 6.3.1Theorem 6.3.1. As already de-

scribed we are going to reduce from the k-Coloring problem. We claim that it is

sufficient to show the following.

Theorem 6.4.1. Let H be a fixed connected bipartite undecomposable graph, whose com-

plement is not a circular-arc graph. Unless the SETH fails, there is no algorithm that

solves the LHom(H) problem on instances with n vertices and treewidth t in time (i(H)−

ε)t · nO(1), for any ε > 0.

Let us show that Theorem 6.4.1Theorem 6.4.1 implies Theorem 6.3.1Theorem 6.3.1.

(Theorem 6.4.1Theorem 6.4.1 → Theorem 6.3.1Theorem 6.3.1). Assume the SETH and that Theorem 6.4.1Theorem 6.4.1

holds, but Theorem 6.3.1Theorem 6.3.1 fails. So there is ε > 0, a connected non-bi-arc graph H,

and an algorithm A that solves LHom(H) in time (i∗(H) − ε)t · nO(1) for every input

(G, L) such that G is an n-vertex bipartite graph. Recall that i∗(H) = i∗(H∗).

By definition of i′(H∗), there exists a connected, bipartite, undecomposable graph H ′,

whose complement is not a circular-arc graph, such that H ′ is an induced subgraph of H∗,

and i∗(H∗) = i(H ′). Let (G, L) be an instance of LHom(H ′), such that G is a graph on

n vertices. Note that we can assume that G is a bipartite graph, with bipartition classes

X and Y , since all the remaining instances can be answered in time polynomial in n.

We can also assume that G is connected, since otherwise we run the algorithm separately

for every connected component of G. Moreover, if A and B are different bipartition

classes of H ′, then we can assume that L(X) ⊆ A and L(Y) ⊆ B, or L(X) ⊆ B and

L(Y) ⊆ A (formally, we can solve two instances with the lists restricted to respective

bipartite classes, and return that (G, L) is a yes-instance if and only if one of these is a

yes-instance).

Clearly, (G, L) can be seen as an instance of LHom(H∗), where no vertex from V (H∗)\

V (H ′) appears in any list. Note that by our assumptions, (G, L) is precisely as in the

assumptions of Proposition 6.3.3Proposition 6.3.3 . Consider the instance (G, L̂) of LHom(H), constructed

138

as in Proposition 6.3.3Proposition 6.3.3. The algorithm A solves this instance in time (i∗(H) − ε)t · nO(1).

By Proposition 6.3.3Proposition 6.3.3, this is equivalent to solving the instance (G, L) of LHom(H∗) in

time (i∗(H∗) − ε)t · nO(1), and this, in turn, is equivalent to solving the instance (G, L) of

LHom(H ′) in time (i(H ′) − ε)t · nO(1), a contradiction. □

It remains to prove Theorem 6.4.1Theorem 6.4.1.

Proof of Theorem 6.4.1Theorem 6.4.1. Let S be a largest sound incomparable set in H. Let k = |S|,

i.e., k = i(H) ⩾ 3 (by Observation 5.3.1Observation 5.3.1).

Let G be an instance of k-Coloring. Clearly we can assume that G is connected and

has at least 3 vertices. We will construct an instance (G′, L) of LHom(H) that has the

following properties:

(a) (G′, L) → H if and only if G is k-colorable,

(b) the number of vertices of G′ is at most g(H) · |E(G)| for some function g,

(c) the treewidth of G′ is at most g(H) + tw(G),

(d) G′ can be constructed in time |V (G)|O(1) · g′(H) for some function g′.

Observe that this is sufficient to prove the theorem. Indeed, suppose that for some

ε > 0 we can solve LHom(H) in time (k − ε)t · nO(1) on instances of treewidth t. Thus,

for an instance G, we construct (G′, L) in time |V (G)|O(1) · g′(H), and apply algorithm

for LHom(H) to (G′, L). This gives an algorithm solving the k-Coloring problem on

G in time

|V (G)|O(1) · g′(H) + (k − ε)t · |V (G′)|O(1) ⩽ (k − ε)t+g(H) · (g′(H) · g(H) · |E(G)|)O(1)

= (k − ε)t · |V (G)|O(1),

where the last step follows since |V (H)| is a constant. Recall that by Theorem 1.2.1Theorem 1.2.1, the

existence of such an algorithm for k-Coloring contradicts the SETH.

We start the construction of G′ with the vertex set of G. The lists of these vertices

are set to S. Let NEQ(S) = {(u, v) ∈ S2 | u ̸= v}. For each edge uv of G, we introduce

a copy (Fuv, L, (xuv, yuv) of a list-NEQ(S)-gadget given by Theorem 6.3.2Theorem 6.3.2. We identify

xuv, yuv with u and v, respectively. This completes the construction of (G′, L). Let us

show that it satisfies the properties (a)–(d).

139

Note that (a) follows directly from Theorem 6.3.2Theorem 6.3.2. Indeed, consider an edge uv of G.

On one hand, for every list homomorphism f : (G′, L) → H we have that f(u) ̸= f(v).

On the other hand, mapping u and v to any distinct vertices from S can be extended to

a homomorphism of the whole graph Fuv.

To show (b), recall that |V (Fuv)| depends only on H, denote it be g(H). Every original

vertex of G belongs to some gadget in G′, so G′ contains at most g(H) · |E(G)| vertices.

Next, consider a tree decomposition T = (T, {Xt}t∈V (T)}) of G of width t. We extend

T to a tree decomposition T ∗ of G′ as follows: for every edge uv in G we choose one bag

Xi such that u, v ∈ Xi, and we add a new bag X ′
i = Xi ∪ V (Fuv), which becomes the

parent of Xi, and a child of the previous parent of Xi. We repeat this for every edge,

making sure that for Xi we can only choose the original bags coming from T . Note that

it might happen that we will insert several new bags in a row, if the same Xi was chosen

for different edges, but this is not a problem. Is it straightforward to observe that T ∗ is

a tree decomposition of G′, and the width of T ∗ is at most g(H) + t. This proves (c).

Finally, it is straightforward to observe that the construction of G′ was performed in

time polynomial in G (recall that we treat H as a constant-size graph).

140

Chapter 7

Complexity of the homomorphism

problems in F -free classes

The last major problem investigated in this dissertation is the study of the graph homo-

morphism problems in graph classes that are obtained by excluding a fixed graph as an

induced subgraph. As already explained in the introduction, we aim to classify for which

pairs (F, H) of fixed graphs the Hom(H) and LHom(H) problems can be solved in subex-

ponential time in F -free graphs. In addition, some of the results presented in this chapter

serve as a nice illustration of the possible applications of several already introduced tools.

We focus mainly on the LHom(H) problem. Recall that we restrict our considerations

to connected forbidden induced subgraphs. As discussed in the introduction, if F is a

connected graph that is not a path nor a subdivided K1,3 (called also subdivided claws),

then for every non-bi-arc graph H the LHom(H) problem remains NP-hard in F -free

graphs and cannot be solved in subexponential time, unless the ETH fails [101101, 102102].

Thus, we focus on the remaining cases, i.e, graphs F that are paths and subdivided claws.

Recall that by St,t,t we denote the claw whose every edge is subdivided t − 1 times.

We complete the classification (up to one extra assumption in the case of St,t,t-free

graphs) in the following sense: we identify two families of graphs H, called predacious

graphs and safe graphs, and prove the two dichotomy theorems:

Theorem 1.3.4. Let H be a fixed graph.

a) If H is not predacious, then for every t ∈ N the LHom(H) problem can be solved in

time nO(log2 n) in n-vertex Pt-free graphs.

141

b) If H is predacious, then there exists t ∈ N such that LHom(H) is NP-complete and

cannot be solved in time 2o(n) in n-vertex Pt-free graphs, unless the ETH fails.

Theorem 1.3.5. Let H be a fixed undecomposable graph.

a) If H is safe, then, for every t ∈ N, the LHom(H) problem can be solved in time

2O(
√

n log2 n) in n-vertex St,t,t-free graphs.

b) Otherwise, there exists t ∈ N such that LHom(H) is NP-complete and cannot be solved

in time 2o(n) in n-vertex St,t,t-free graphs, unless the ETH fails.

Since the precise definitions of predacious and safe graphs are quite technical and in

particular the first one is based on the notions of decomposable graphs introduced in

Chapter 5, they are postponed to the next sections, where we also give some intuition

behind them.

One has to have in mind that since LHom(H) is a generalization of Hom(H), the

hardness results for LHom(H) do not imply hardness for Hom(H). In the last section

of this chapter we provide some lower bounds for the Hom(H) problem in F -free graphs

that can be, in particular, obtained by combining various tools and theorems presented

in this and previous chapters.

Notation and fixed targets. We emphasize that in the statements of theorems pre-

sented in this chapter we assume that H is a fixed graph. In particular, H is a graph of

constant size. Recall that in Chapter 6Chapter 6 we considered the LHom variant of list homo-

morphism problem, where H is given as a part of the input, so the formal definition of

an instance was slightly different. Now, some of the notions we introduced before have

become simpler, however, to use them, we have to adjust them to the appropriate setting.

Recall that formally, an instance of LHom(H) is now a pair (G, L) such that G is

a graph and L : V (G) → 2V (H) is a list function. Clearly, if (G, L) is an instance of

LHom(H), then (G, H, L) is an equivalent instance of LHom.

Recall that for a graph H, the set FactorsT (H) consists of the graphs corresponding to

the leaves of a factorization tree T (that is defined using the notions of decompositions and

factors introduced in Chapter 5Chapter 5). We denote by H the family of the graphs corresponding

to the leaves of all possible factorization trees T . In other words, H contains all the

non-bi-arc undecomposable graphs that can be obtained by decomposing H iteratively,

142

and also some bi-arc graphs that can be obtained this way. Note that since H is fixed, we

can compute H in constant time. Note also that if H is undecomposable, then H = {H}.

For an instance I = (G, L) of LHom(H), we say that I ′ = (G′, L′) is a subinstance of

(G, L) if G′ is an induced subgraph of G and (here we use notation from Definition 5.2.3Definition 5.2.3,

Definition 5.2.4Definition 5.2.4 and Definition 5.2.5Definition 5.2.5):

• I ′ is an instance of LHom(H), and for every v ∈ V (G′) we have L′(v) ⊆ L(v), or

• (this case applies only if there is a Γ-decomposition of H with factorization (H1, H2))

I ′ is an instance of LHom(H1) or LHom(H2), and for every v ∈ V (G′) we have

either L′(v) ⊆ L(v) or

– if Γ ∈ {F, BP}: if L(v) ∩ S ̸= ∅ for S ∈ {F, B, P}, then L′(v) ⊆ L(v) \ S ∪ {s}

for the corresponding s ∈ {f, b, p} (here s ∈ V (H2) is obtained by contracting

the set S to a single vertex, as in the definition of H2),

– if Γ = BB: if L(v) ∩ (B1 ∪ B2) ̸= ∅, then L′(v) ⊆ L(v) \ (B1 ∪ B2) ∪ B′, where

B′ = {b1} (resp. B′ = {b2}) if L(v) ∩ B2 = ∅ (resp. L(v) ∩ B1 = ∅) and

B′ = {b1, b2} if L(v) ∩ B1, L(v) ∩ B2 ̸= ∅.

We also extend the relation of being a subinstance so that it is closed under transitivity:

if (G′′, L′′) is a subinstance of (G′, L′), and (G′, L′) is a subinstance of (G, L), we call

(G′′, L′′) a subinstance of (G, L).

Let us observe that we can define the measure ||I|| of an instance I = (G, L) of

LHom(H) as ||I|| = ∑
v∈V (G)(|L(v)| − 1), so that it coincides with the measure ||I ′|| of an

instance I ′ = (G, H, L) of LHom, defined as in Section 5.1. However, we note that since

H is fixed, we now have ||I|| = O(|V (G)|).

Summing up, we can restate Theorem 6.1.7Theorem 6.1.7 for the case when H is fixed as follows.

Theorem 7.0.1. Let H be a fixed graph. There is a family Factors(H) ⊆ H, such that:

(1) each H ′ ∈ Factors(H) is either bi-arc or undecomposable,

(2) H is a bi-arc graph if and only if every H ′ ∈ Factors(H) is a bi-arc graph,

(3) for each H ′ ∈ Factors(H), the graph H ′∗ is an induced subgraph of H∗,

(4) for every instance I = (G, L) of LHom(H), the following holds:

143

Assume that for every undecomposable H ′ ∈ H there exists an algorithm AH′ that

solves every subinstance (G′, L′) of (G, L) that is an instance of LHom(H ′) in time

f ′(G′) · |V (G′)|O(1) for some function f ′ that is monotone w.r.t. taking induced sub-

graphs. Then we can solve I in time f ′(G) · |V (G)|O(1).

Proof. Note that items (1)-(3) follow directly from Theorem 6.1.7Theorem 6.1.7. To see that (4) is also

a consequence of Theorem 6.1.7Theorem 6.1.7, define f(Ĝ, Ĥ) = f ′(Ĝ) and note that by the assumption

on f ′, f is factor-monotone. Now, by the assumption of (4), we can solve every subinstance

I ′ = (G′, L′) of (G, L) that is an instance of LHom(H ′) in time f ′(G′) · |V (G′)|O(1) =

f(G′, H ′) · ||I ′||O(1). By Theorem 6.1.7Theorem 6.1.7 (4) (applied constantly many times), we can then

solve I = (G, L) in time f(G, H) · ||I||O(1) = f ′(G) · |V (G)|O(1).

The remaining part of the chapter is divided into two sections. Section 7.1 contains

the proof of Theorem 1.3.4Theorem 1.3.4, and Section 7.2 contains the proof of Theorem 1.3.5Theorem 1.3.5. Each

of these sections contains two subsections, corresponding to parts a) and b) of respective

theorems.

7.1 Pt-free graphs

In this section we focus on Theorem 1.3.4Theorem 1.3.4. Before we present the definition of predacious

graphs, that are crucial for the statement of the theorem, let us discuss some intuition

behind it. Informally speaking, we need to understand what property of target graphs

H makes it possible to solve the LHom(H) problem in Pt-free graphs for a fixed t, i.e.,

distinguish “easy” non-predacious graphs H from the “hard” predacious ones, so the

dichotomy in Theorem 1.3.4Theorem 1.3.4 holds.

As already discussed in the introduction, in the classes of graphs defined by forbid-

ding a fixed path Pt the 3-Coloring problem behaves differently than the k-Coloring

problem for k ⩾ 4. Indeed, for every k ⩾ 4 the problem is “hard”, in a sense that there

exists t ∈ N such that k-Coloring in NP-complete and cannot be solved in subexponen-

tial time in Pt-free graphs, unless the ETH fails. This is not the case for 3-Coloring,

as witnessed by the mentioned quasipolynomial-time algorithm by Pilipczuk et al. [103103].

Therefore, if we are interested in the boundary between the “easy” and “hard” target

graphs H, the clique K3 falls under the first category, while all the bigger cliques fall into

the other.

144

Recall that Groenland et al. [5656] proved that if H is a graph in which any two distinct

vertices share at most one common neighbor, then LHom(H) (or actually a more general,

weighted version of the problem) can be solved in subexponential time in Pt-free graphs.

See Figure 7.1Figure 7.1. While such graphs H turned out to be only a subclass of non-predacious

target graphs for our problem, a crucial observation was made there: if no two vertices

of H have two common neighbors, then assigning any vertex from L(v) to a vertex v of

the instance allows us to propagate the choice to the neighbors of v. It was then used to

design a branching algorithm for the weighted homomorphism problem.

Figure 7.1: No two vertices of H have two common neighbors if and only if H does not
contain any of the graphs above as an induced subgraph.

Since in the LHom(H) problem we can in particular assume that the lists are incom-

parable sets, to use a similar method, we introduce a more specific structure, called a

predator (see Figure 7.2Figure 7.2).

Definition 7.1.1. A 4-tuple (a1, a2, b1, b2) of vertices of H is called a predator if {a1, a2}

and {b1, b2} are incomparable sets, complete to each other.

a1

b1

b2

a2

a1

b1

b2

a2

a1

b1

b2

a2

a1 = b2

b1

a2

a1 = b1 a2 = b2

Figure 7.2: Examples of predators (a1, a2, b1, b2) and their neighbors. Red dashed lines
denote the edges that cannot exist. The edges that are not drawn are possible, but not
necessary.

It turns out that if H is an undecomposable graph, then the existence of a predator

in H is the main obstacle for an efficient algorithm for LHom(H) in Pt-free graphs. An

undecomposable graph H is predacious if there a connected non-bi-arc component of H

that contains a predator.

The only thing that is missing now is how the decompositions of the target graph come

into play. We show that in order to solve LHom(H), it is sufficient to solve LHom(H ′)

145

for every H ′ ∈ H (this is a consequence of Theorem 7.0.1Theorem 7.0.1). Thus, if every graph in H is

non-predacious, we are able to solve LHom(H) in Pt-free graphs efficiently, thus H is an

“easy” target graph.

On the other hand, we find a way to reduce LHom(H ′) to LHom(H) for every H ′ ∈ H.

Therefore, if any H ′ ∈ H is predacious, then so should be H. We are ready to define the

class of predacious graphs.

Definition 7.1.2. A graph H is predacious if there exists a graph H ′ ∈ H and a non-bi-

arc connected component of H ′ that contains a predator.

In other words, H is predacious if and only if there exists H ′ ∈ H that is predacious.

The proof of Theorem 1.3.4Theorem 1.3.4 (a) builds on the decomposition of target graphs H defined

in Chapter 5Chapter 5, and on the quasi-polynomial-time algorithm for 3-Coloring Pt-free graphs

by Pilipczuk et al. [103103], which is in turn inspired by the algorithm for Max Independent

Set by Gartland and Lokshtanov [5151]. The main part of our algorithm is a simple

branching procedure: for an instance (G, L) of LHom(H), we choose a vertex v ∈ V (G)

and a ∈ L(v) and guess whether we map v to a or not. The crucial challenge here is

choosing the pair (v, a) appropriately, so that the at least one of the instances obtained in

the branches is significantly smaller (with respect to a certain measures) than the original

instance. To prove the existence of a such pair we use the fact that H does not contain a

predator—note, however, that this is not exactly the definition of a non-predacious graph.

Here Theorem 7.0.1Theorem 7.0.1 comes into play: we note that it is enough to have an algorithm that

solves LHom(H) when H is undecomposable.

The hardness counterpart of Theorem 1.3.4Theorem 1.3.4, consists of three parts. First, we sepa-

rately consider strong split target graphs H. We show that if H is a strong split non-bi-arc

graph, then there always exists t ∈ N such that LHom(H) is hard in Pt-free graphs. In-

deed, although we will not use this fact, it can be shown that every non-bi-arc strong

split graph is predacious. Second, we proceed to undecomposable bipartite non-bi-arc

predacious target graphs H. We exploit the structure of a predator in H, and this, com-

bined with Theorem 6.3.2Theorem 6.3.2, turns out to be precisely what is needed to perform an elegant

reduction from the 3-Sat problem. Last, we conclude the hardness proof by showing that

the two mentioned reductions are enough to construct a lower bound for the general case,

using the idea of associated bipartite graphs introduced in Proposition 5.0.2Proposition 5.0.2.

146

7.1.1 The algorithm

We claim that to prove Theorem 1.3.4Theorem 1.3.4 a), it is sufficient to show the following.

Theorem 7.1.3. Let H be a fixed connected, non-bi-arc graph that does not contain a

predator. Then for every t ∈ N, the LHom(H) problem can be solved in time nO(log2 n) in

n-vertex Pt-free graphs.

Indeed, consider a non-predacious graph H. By definition, no graph H ′ ∈ H has a

connected component that is non-bi-arc and contains a predator. Thus we can always

solve LHom(H ′) in time |V (G)|O(log2 |V (G)|) by Theorem 7.1.3Theorem 7.1.3 and the fact that for bi-arc

target graphs the list homomorphism problem can be solved in polynomial time. Since

for every constant c ⩾ 1 the function |V (G)|c log2 |V (G)|) is monotone w.r.t. taking induced

subgraphs, Theorem 1.3.4Theorem 1.3.4 follows from Theorem 7.0.1Theorem 7.0.1 (4).

Thus, from now on, we focus on proving Theorem 7.1.3Theorem 7.1.3. We need the following simple

observation.

Observation 7.1.4. Let H be a graph which does not contain a predator. For any in-

comparable sets X, Y ⊆ V (H), each of size at least 2, there exist a ∈ X and b ∈ Y such

that ab /∈ E(H).

Proof. For contradiction, suppose that there are two incomparable sets X, Y , each of size

at least 2, which are complete to each other. Let a1, a2 be distinct elements from X, and

b1, b2 be distinct elements from Y . Then (a1, a2, b1, b2) is a predator.

We proceed to the proof of Theorem 7.1.3Theorem 7.1.3.

Proof of Theorem 7.1.3Theorem 7.1.3. Let (G, L) be an instance of LHom(H), such that G is Pt-free.

We start with a preprocessing phase, in which we exhaustively perform the following

steps, in given order.

1. If for some v ∈ V (G) it holds that L(v) = ∅, then we terminate and report a

no-instance.

2. We enumerate all S ∈
(

V (G)
⩽t

)
, and all possible homomorphisms (G[S], L) → H. If

for some v ∈ V (G), some a ∈ L(v), and some S ∈
(

V (G)
⩽t

)
such that v ∈ S there is

no h : (G[S], L) → H such that h(v) = a, we remove a from L(v).

147

3. If for some v ∈ V (G) we have |L(v)| = 1, we remove v from G. Note that by the

previous step the lists of neighbors of v contain only neighbors of the vertex in L(v).

The correctness of the above steps is straightforward. Furthermore, as t and |V (H)| are

constant, we can perform the whole preprocessing phase in time polynomial in |V (G)|.

Assume that none of the steps 1.-3. can be further applied. We continue calling the

current instance (G, L), let n be its number of vertices. The instance satisfies the following

properties.

(P1) For every v ∈ V (G), the set L(v) is incomparable and has at least two elements.

(P2) For every v ∈ V (G), every S ∈
(

V (G)
⩽t

)
, such that v ∈ S, and every a ∈ L(v), there

exists h : (G[S], L) → H which maps v to a.

Now let us describe the algorithm. If n ⩽ 1, then we report a yes-instance; recall

that by property (P11) each list is non-empty. If the instance G is disconnected, we call

the algorithm for each connected component independently. We report that (G, L) is a

yes-instance if and only if all these calls report yes-instances.

If none of the above cases occurs, we perform branching. We will carefully choose a

branching pair (v, a), where v ∈ V (G) and a ∈ L(v), and branch into two possibilities. In

the first one, called the successful branch, we call the algorithm recursively with the list

L(v) set to {a}. This corresponds to coloring v with a. Note that in the preprocessing

phase of this call we will remove all non-neighbors of a from the lists of neighbors of v,

and then remove v from the graph. In the second branch, called the failure branch, we

call the algorithm with a removed from L(v). This corresponds to choosing not to color v

with a. Then, we report a yes-instance if and only if at least one of the branches reports

a yes-instance.

Now let us discuss how we select a branching pair. For each {u, u′} ∈
(

V (G)
2

)
we define

the buckets B′
u,u′ and Bu,u′ . The elements of B′

u,u′ are the induced u-u′-paths in G. Let

θ(u, u′) := |B′
u,u′ | The elements of Bu,u′ are all possible pairs (P, h), where P ∈ B′

u,u′ and

h is a list homomorphism from (P, L) to H. We refer to pairs (P, h) as colored paths.

Claim 7.4.1 ([103103]). A connected Pt-free graph has a vertex v such that there exists at

least
(

n
2

)
/2t sets {u, u′} ∈

(
V (G)

2

)
such that N [v] intersects at least θ(u, u′)/2t paths in

B′
u,u′.

148

Note that since G is Pt-free, the total size of every bucket Bu,u′ is O(nt), and they can

be enumerated in polynomial time. Furthermore, by property (P22), we know that Bu,u′ is

non-empty if and only if u and u′ are in the same connected component of G. Even more,

if w belongs to an induced u-u′-path P , and a ∈ L(w), then Bu,u′ contains a colored path

(P, h), such that h(w) = a.

Define

δ := 1
2|V (H)|+1 · t

and ε := 1
2|V (H)|+1 · |V (H)|t−1 · t

= δ

|V (H)|t−1 .

Intuitively, the following claim shows that we can always choose a branching pair that

allows us to significantly decrease the size of at least one instance in the branches.

Claim 7.4.2. If G is a connected Pt-free graph, then there is a pair (v, a), where v ∈ V (G)

and a ∈ L(v), with the following property. There is a set Q ⊆
(

V (G)
2

)
of size at least δ ·

(
n
2

)
,

such that for every {u, u′} ∈ Q there is a subset Pu,u′ ⊆ Bu,u′ of size at least ε · |Bu,u′|,

such that for every (P, h) ∈ Pu,u′, there is wP ∈ V (P) ∩ N [v], such that h(wP) /∈ NH(a).

Proof of Claim. By Claim 7.4.1Claim 7.4.1, there is a vertex v ∈ V (G), such that for at least 1
2t

(
n
2

)
pairs {u, u′} ∈

(
V (G)

2

)
and for at least 1

2t
θ(u, u′) induced u-u′-paths P , the set N [v]

intersects V (P).

Recall that the number of distinct elements of {L(u) | u ∈ V (G)} is at most 2|V (H)|.

Thus, by the pigeonhole principle there is a list L′ ⊆ V (H) and a subset Q ⊆
(

V (H)
2

)
of

size at least 1
2|V (H)|+1·t

(
n
2

)
= δ ·

(
n
2

)
, such that the following property is satisfied.

(⋆) For every {u, u′} ∈ Q there exists a set Pu,u′ of at least δ ·θ(u, u′) induced u-u′-paths,

such that for every P ∈ Pu,u′ there exists wP ∈ N [v] ∩ V (P), such that L(wP) = L′.

By property (P11) we know that each of L(v) and L′ is an incomparable set with at least

two elements. Thus by Observation 7.1.4Observation 7.1.4 we know that there are a ∈ L(v) and b ∈ L′,

which are non-adjacent in H.

Let us argue that the pair (v, a) satisfies the desired conditions. Fix some {u, u′} ∈

Q. As every induced u-u′ path has at most t − 1 elements, we have that |Bu,u′| ⩽

|V (H)|t−1 · θ(u, u′). On the other hand, by property (P22), for every P ∈ Pu,u′ there exists

a homomorphism h : (P, L) → H such that h(wP) = b /∈ NH(a). So, summing up, we

149

obtain that the number of such pairs (P, h) ∈ Bu,u′ is at least

|Pu,u′| ⩾ δ · θ(u, u′) ⩾ δ

|V (H)|t−1 · |Bu,u′| = ε · |Bu,u′ |.

⌟

Consider the successful branch for the branching pair (v, a) given by Claim 7.4.2Claim 7.4.2. We

use the notation from the statement of the claim. For some {u, u′} ∈ Q, let (P, h) be a

colored path in Pu,u′ , and let wP be as in the claim. Consider the preprocessing phase of

the current call. If wP = v, then wP is removed from the graph, so (P, h) will no longer

appear in the bucket of {u, u′}. Similarly, if wP ̸= v, then we remove h(wP) from L(wP),

so (P, h) will not appear in the bucket of {u, u′}. Thus, informally speaking, when we

branch using the pair (v, a), in the successful branch we remove an ε-fraction of elements

in a δ-fraction of buckets.

Note that in each recursive call the total size of lists is reduced, so the algorithm

terminates. It is also clear that it always returns a correct answer. So let us argue that

the complexity is indeed bounded by nO(log2 n). The analysis is essentially the same as the

one of the algorithm by Pilipczuk et al. [103103]. We present it for the sake of completeness.

Let T be the recursion tree of the algorithm called for the instance (G, L). The nodes

of T correspond to calls at instances (G′, L′), where G′ is an induced subgraph of G, and

for each v ∈ V (G′) it holds that L′(v) ⊆ L(v). For a node of T , corresponding to a call at

instance (G′, L′), its local subtree consists of all descendant calls where the instance graph

has at least 0.99|V (G′)| vertices. We find a partition Π of nodes of T into local subtrees

in a greedy way. We start with Π = ∅, and while there are still some nodes that are not

covered by Π, we include in Π the local subtree of such a node, which is closest to the

root.

Clearly each path from the root to a leaf of T intersects O(log n) elements of Π.

Consider a local subtree T ′, whose root corresponds to the call at an instance (G′, L′)

with n′ vertices. We claim that T ′ has (n′)O(log n′) = nO(log n) leaves. To see that, we now

mark some edges of T ′. Consider a call in T ′ at an instance (G′′, L′′).

1. If G′′ is disconnected, there is at most one child call that belongs to T ′: its instance

is the component of G′′ with at least 0.99|V (G′′)| vertices. If such a child call exists,

we mark the edge to it.

150

2. If G′′ is connected, then we mark the edge to the call in the failure branch (if it

belongs to T ′).

Every node in T ′ has at most one marked edge to a child. Let T ′′ be obtained from T ′

contracting all marked edges. Every node of T ′′ has O(n′) children and each edge of T ′′

corresponds to a successful branch in some call in T ′. Now it is sufficient to argue that

the depth of T ′′ is O(log n′) = O(log n). Indeed, this implies that the number of leaves

in T ′′ is nO(log n), and the number of leaves in T ′ is at most twice the number of leaves of

T ′′, thus also nO(log n).

For a call at instance (G′′, L′′) in T ′ we define the potential:

µ(G′′, L′′) := −
∑

{u,u′}∈(V (G′′)
2)

log1−ε(1 + |Bu,u′ |).

At the root call of T ′ we have µ(G′, L′) = O((n′)2 log n′). Indeed, the size of each

bucket is at most (n′ · |V (H)|)t−1 ⩽ (n′ · |V (H)|)t, and thus

µ(G′, L′) ⩽ − (n′)2 · log1−ε(1 + (|V (H)| · n′)t) = c · (n′)2 log(1 + (|V (H)| · n′)t)

⩽ 2c · (n′)2 log(|V (H)| · n′)t = 2ct · (n′)2 log(|V (H)| · n′) = O((n′)2 log n′),

where c = − log(1−ε) (here, log is the natural logarithm function). By Claim 7.4.2Claim 7.4.2, every

successful branch at a call on an instance (G′′, L′′) decreases the potential µ by at least

δ ·
(

|V (G′′)|
2

)
⩾ δ ·

(
⌈0.99n′⌉

2

)
⩾ 0.9δ ·

(
n′

2

)
.

Since µ is non-negative, it follows that the depth of T ′′ is bounded by O(log n′) = O(log n).

We conclude that T ′ has nO(log n) leaves.

Now we observe that T ′ has also nO(log n) vertices, as every leaf-to-root path in T ′ has

at most n vertices, and there is at most nO(log n) such paths. Consider a tree T ′′′ obtained

from T by contracting each local subtree T ′ to one vertex. As each vertex of T has at

most O(n) children, each internal node of T ′′′ has at most nO(log n) children. As each

leaf-to-root path in T ′′′ is of length at most O(log n), the total number of nodes in T ′′′ is

at most nO(log2 n). Since each local subtree has nO(log n) vertices, we obtain that the total

number of nodes of T is nO(log2 n).

151

7.1.2 Lower bounds

We will prove the hardness part in a few steps. First, we focus on target graphs that are

strong split graphs, and then on target graphs that are bipartite and undecomposable.

Having this, we will be able to work with the general case, i.e., to obtain the hardness

counterpart of Theorem 1.3.4Theorem 1.3.4.

Strong split target graphs Recall that graph G is a strong split graph, if its set of

vertices can be partitioned into sets B and P such that B is an independent set and P

is a reflexive clique. Similarly, G is a split graph if its vertex set can be partitioned into

B and P such that B is an independent set and P is an irreflexive clique. Equally, split

graphs can be defined as graphs that are {C4, C5, P5}-free.

We start with the following structural observation.

Observation 7.1.5. Let H be a graph, and let H ′ ∈ H be a connected, non-bi-arc strong

split graph. Then H ′ is an induced subgraph of H.

Proof. Recall that by definitions of the factors, if H ′ is not (isomorphic to) an induced

subgraph of H, it is because of vertices that have loops, and all their neighbors also have

loops (and they appear after we apply the F -decomposition). Thus such vertices belong to

the reflexive clique in H ′ and have no neighbors outside this clique. It is straightforward to

verify that if f is such a vertex, then (B, P \ {f}, {f}, ∅, Z) is a BP -decomposition of H ′.

Indeed, as H is non-bi-arc, |B| ⩾ 2. However, since H ′ ∈ H, H ′ must be undecomposable,

a contradiction.

The first part of the hardness proof focuses on strong split target graphs. We reduce

from the general LHom(H) problem and show that it remains hard even if we assume

that G is a split graph (so, in particular, is P5-free).

Theorem 7.1.6. Let H be a fixed connected non-bi-arc strong split graph. Then the

LHom(H) problem is NP-hard and cannot be solved in time 2o(n) in n-vertex split graphs,

unless the ETH fails.

Proof. Let P be the set of vertices in H that have loops, and let B be the set of vertices

of H without loops. Consider an instance (G, L) of LHom(H). As usual, we can assume

that each list L(v) is an incomparable set. As for every p ∈ P and b ∈ B it holds that

152

N(b) ⊆ N(p), no vertex in G has both a vertex from P and a vertex from B in its list.

Since we can assume that every list is non-empty, we can partition the vertex set of V (G)

into two sets:

X := {v ∈ V (G) | L(v) ∩ P ̸= ∅} and Y := {v ∈ V (G) | L(v) ∩ B ̸= ∅}.

Furthermore, as B is independent, without loss of generality we can assume that Y is

independent, as otherwise (G, L) is a no-instance. Let G′ be obtained from G by turning

X into an irreflexive clique, i.e., we add all edges with both endvertices in X (except for

loops). It is straightforward to verify that (G, L) → H ′ if and only if (G′, L) → H ′. As

V (G′) is partitioned into a clique X and an independent set Y , the theorem follows.

General target graphs As a second part of our hardness proof, we focus on bipartite

undecomposable target graphs. Then, we wrap up the proof and show Theorem 1.3.4Theorem 1.3.4 b).

Theorem 7.1.7. Let H be a fixed, bipartite, undecomposable, predacious graph. Then

there exists t ∈ N, such that the LHom(H) problem in NP-hard and cannot be solved in

time 2o(n) in n-vertex Pt-free graphs, unless the ETH fails.

Proof. If H is undecomposable, so is its every connected component. Let H ′ be a non-bi-

arc connected component of H that contains a predator (a1, a2, b1, b2). As H ′ is bipartite,

we note that {a1, a2} (resp. {b1, b2}) is contained in one bipartition class, thus, is a sound

incomparable set. We reduce from 3-Sat. Consider a formula Φ of 3-Sat with variables

x1, . . . , xN and clauses C1, . . . , CM . Without loss of generality we can assume that each

clause has exactly three literals (we can ensure this by duplicating some literal in a

shorter clause). We construct an instance (GΦ, L) of LHom(H ′) (and thus of LHom(H))

as follows. First, we introduce a biclique with partite sets V := {v1, . . . , vN} and U :=

{u1, . . . , u3M}. Vertices in V are in one-to-one correspondence to the variables of Φ, while

vertices in U are in one-to-one correspondence to literals in Φ, i.e., the occurrences of the

variables in clauses. For a clause Ci, by Ui we denote the three-element subset of vertices

of U corresponding to the literals of Ci. For every j ∈ [N] we set L(vj) = {a1, a2} and

for every i ∈ [3M] we set L(ui) = {b1, b2}.

The intuition behind the construction is that mapping the vertex vj to a1 (a2, resp.)

corresponds to making the variable vj true (false, resp.). Similarly, we will interpret uj

153

being mapped to b1 (b2, resp.) as setting the corresponding literal true (false, resp.). So

we need to ensure that (i) the coloring of vertices in V is correspond to the coloring of

vertices in U , according to the above interpretation, and (ii) for each clause Ci, at least

one vertex in Ui is mapped to b1.

To ensure property (i), we will introduce two types of occurrence gadgets. We use

Theorem 6.3.2Theorem 6.3.2 to construct a list-{(a1, b1), (a2, b2)}-gadget, called positive occurrence gad-

get, and list-{(a1, b2), (a2, b1)}-gadget, called negative occurrence gadget. Recall from the

definition that a positive occurrence gadget (F, L, (x1, x2)) has two interface vertices x1

and x2 such that

{(h(x1), h(x2)) | h : (F, L) → H} = {(a1, b1), (a2, b2)}.

Similarly, a negative occurrence gadget (F, L, (x1, x2)) has two interface vertices x1 and

x2 such that

{(h(x1), h(x2)) | h : (F, L) → H} = {(a1, b2), (a2, b1)}.

Note that from the properties of every gadget (F, L, X) we introduced it follows that there

exists a homomorphism F → H ′, thus F is in particular bipartite, with interface wertices

in different bipartition classes.

Now consider a vertex ui ∈ U , which corresponds to an occurrence of a variable xj, and

thus to the vertex vj. If ui corresponds to a positive (resp., negative) literal, we introduce

a positive (resp., negative) occurrence gadget, and identify vj and ui, respectively with

its first and second interface vertex.

In the following straightforward claim we summarize that the constructed gadgets can

indeed be used to ensure property (i).

Claim 7.1.7.1. Let (F, L, (vj, ui)) be a positive (resp., negative) occurrence gadget. There

exist homomorphisms h1, h2 : (G, L) → H, such that h1(vj) = a1 and h2(vj) = a2.

Moreover, for any homomorphism (G, L) → H, it holds that h(vj) = a1 if and only if

h(ui) = b1 (resp., h(ui) = b2).

To ensure (ii), consider a set Ui = {u1, u2, u3}, corresponding to the literals of some

clause Ci. We observe that in order to satisfy property (ii), we need to construct a list-

OR3(b1, b2)-gadget, whose interface vertices are precisely u1, u2, and u3. We introduce

a list-OR3(b1, b2)-gadget given by Theorem 6.3.2Theorem 6.3.2, and identify its interface vertices with

154

u1, u2, and u3. Clearly, the gadget again must be bipartite, and its interface vertices

belong to the same bipartition class. This completes the construction of (GΦ, L). The

following claim follows directly from the discussion above.

Claim 7.1.7.2. There exists a list homomorphism h : (GΦ, L) → H if and only if there

exists a truth assignment of variables of Φ such that all clauses are satisfied.

It remains to show that the length of a longest induced path in GΦ is bounded by a

constant (that may depend on |V (H ′)|). Let t′ be the maximum of the numbers of vertices

in a positive occurrence gadget, a negative occurrence gadget, and an OR3(b1, b2)-gadget,

and let t := 4t′ + 4.

Claim 7.1.7.3. The graph GΦ is Pt-free.

Proof of Claim. For contradiction, suppose that P is an induced path in GΦ with at least

t vertices. A segment of P is an inclusion-wise maximal subpath consisting of vertices of

one gadget, excluding the vertices of V ∪ U . Note that each two consecutive segments

on P are separated by a vertex from V ∪ U . As each segment has at most t′ vertices,

we obtain that P contains (at least) four vertices from V ∪ U . Clearly, if P contains two

vertices from U and two vertices form V , then P cannot be an induced path. Similarly,

P cannot contain three vertices from U (resp. V) and a vertex from V (resp. U). Thus

we either have V (P) ∩ (U ∪ V) ⊆ V or V (P) ∩ (U ∪ V) ⊆ U . Note, however, that the

first case is impossible, since each vertex of V is in a separate connected component of

GΦ −U . Similarly, there are at most three vertices of U in a single list-OR3(b1, b2)-gadget,

and thus each connected component of GΦ − V contains at most three vertices of U . This

is a contradiction with the fact that P contains at least four vertices of U ∪ V . ⌟

We note that we do not make any attempt in the above claim to optimize t. As the

number of vertices in GΦ is O(N + M), the theorem holds.

It remains to show how to derive Theorem 1.3.4Theorem 1.3.4 b).

Proof of Theorem 1.3.4Theorem 1.3.4 b). Since H is predacious, there exists H ′ ∈ H that has a non-bi-

arc connected component H ′′ with a predator.

If H ′′ is a strong split graph, then by Theorem 7.1.6Theorem 7.1.6, the LHom(H ′′) problem cannot

be solved in subexponential time in split graphs, that are in particular P5-free. Since, by

155

Observation 7.1.5Observation 7.1.5, H ′′ is an induced subgraph of H, any instance of LHom(H ′′) can be

seen as an instance of the LHom(H) problem. Thus, the statement follows.

If H ′′ is not a strong split graph, suppose, for contradiction, that for every t there

is an algorithm At, which solves every Pt-free instance of LHom(H) in subexponential

time. By Lemma 5.2.7Lemma 5.2.7, H ′′∗ is undecomposable. Thus, H ′′∗ satisfies the assumptions of

Theorem 7.1.7Theorem 7.1.7. Let t be given by Theorem 7.1.7Theorem 7.1.7 for H ′′∗.

Consider an arbitrary instance (G, L) of LHom(H ′′∗), where G is Pt-free. As H ′′∗ is

an induced subgraph of H∗, the instance (G, L) can be seen as an instance of LHom(H∗).

Create an instance (G, L̂) of LHom(H), where L̂ is as in Proposition 6.3.3Proposition 6.3.3. Construct-

ing L̂ clearly takes polynomial time, and (G, L) → H∗ if and only if (G, L̂) → H by

Proposition 6.3.3Proposition 6.3.3. We can use At to decide whether (G, L̂) → H or, equivalently, whether

(G, L) → H ′′∗, in subexponential time. This contradicts Theorem 7.1.7Theorem 7.1.7.

7.2 St,t,t-free graphs

In this section we focus on Theorem 1.3.5Theorem 1.3.5. Before we formally define safe graphs, let us

first provide an intuition behind their structure, and the overall description of the result.

The class of St,t,t-free graphs can be seen as a generalization of claw-free graphs (that

we equivalently call S1,1,1-free or K1,3-free graphs). These are, in turn, a generalization of

another important class of line graphs. Recall that for k ⩾ 3 the k-Coloring problem is

NP-complete and cannot be solved in subexponential time even in line graphs, unless the

ETH fails [7070, 8686]. This of course implies that if H is a clique on at least three vertices,

the Hom(H) problem is NP-complete and cannot be solved in subexponential time even

in line graphs, unless the ETH fails.

Recall that in the case of Pt-free graphs it was observed that similar techniques can

be used to solve (List-)3-Coloring and Max Independent Set (MIS) in quasi-

polynomial time. We exploited this similarity in our work, generalizing this approach

allowed us to solve LHom(H) for all non-predacious graphs H. Here, we again aim

for the algorithm that solves the list version of the homomorphism problem, however,

we already noted that the existence of an algorithm that solves (List-)3-Coloring in

subexponential time in St,t,t-free graphs is unlikely. Still, algorithms that solve the MIS

problem in St,t,t-free graphs in subexponential time exist [1717, 1818, 9090]—and surprisingly,

156

it turns out that there is again a similarity of behavior between the MIS problem and

the LHom(H) problem for certain target graphs H. Although we still need to develop a

framework that allows us to work with homomorphisms instead of independent sets, it is

possible to apply techniques used to solve MIS in subexponential time in our algorithm

for the LHom(H) problem in St,t,t-free graphs.

It is worth to mention that while the current techniques developed in the area seem

to be insufficient to design a polynomial-time algorithm for the MIS problem in St,t,t-free

graph classes, the problem itself brings a lot of attention of researchers—including a recent

breakthrough result claimed by Gartland et al. [5252] who provided a quasi-polynomial time

algorithm for the problem. It is possible that their approach could also be used to improve

our algorithm for the LHom(H) problem, as in the case of Pt-free graphs; we are, however,

basing our work on the algorithm of Majewski et al. [9090] that has the subexponential time

complexity.

There are two main phases of the algorithm of Majewski et al. [9090]. One of them is

branching, similar to the one in the proof of Theorem 7.1.3Theorem 7.1.3, but conceptually simpler;

since we do not know how to pick a good branching pair, we choose a vertex of the

instance graph that has large degree. Then, if there is no such vertex, we use the notion

of an extended strip decomposition introduced by Chudnovsky and Seymour [2020] (that

we define formally in Section 7.2.2Section 7.2.2). Informally, an instance graph G that can be nicely

decomposed this way is “similar” to a line graph. In particular, in such a decomposition

one can distinguish particles being induced subgraphs of G whose interaction with each

other is somehow restricted; an algorithm for MIS can recurse on individual particles,

compute the maximum independent sets there, and combine the results into a maximum

independent set in G using a maximum matching algorithm on an auxiliary graph.

We need to understand which property of a target graph H allow us to apply a similar

strategy to solve the LHom(H) problem. We call safe the graphs H for which there exists

a subexponential time algorithm solving LHom(H) in St,t,t-free graphs for every t. We

focus on the case when H is an undecomposable graph.

The branching phase again requires only the absence of a predator in H. Clearly,

a safe graph cannot be predacious—for each fixed t ∈ N, the class of Pt-free graphs is

a subclass of St,t,t-free graphs, thus any algorithm that works for the class of St,t,t-free

graphs in particular solves the problem for Pt-free graphs.

157

L(v)

L(u)

L(w)

H

Figure 7.3: An example of a double-triangle that appears on the lists L of an instance
(G, L). Here, three vertices v, u, w form a triangle in G, and each of their lists consists
of two vertices of H (different vertices of H are represented by different colors). Other
edges in H may also exist.

The part where extended strip decompositions come into play is certainly more com-

plicated. First, it turns out that if the graph H does not contain a non-trivial triangle

then a simple preprocessing of an instance (G, L) is enough to solve it. A triangle in a

graph H is a triple of vertices (a, b, c) of H such that ab, bc, ac ∈ E(H). In particular,

if a ∈ V (H) is reflexive, then (a, a, a) is a triangle. A non-trivial triangle is a triangle

(a, b, c) such that either H[{a, b, c}] is an irreflexive triangle, or two of the vertices a, b, c

are equal and incomparable with the third one. We denote by T (H) the set of triangles

in H.

If H contains a non-trivial triangle, we decompose the graph G into particles, using

the notion of an extended strip decomposition, and proceed by recursion. Then, the main

obstacle we face is ensuring that the solution obtained by combining the solutions of the

recursive calls for the particles of the decomposition is still a (list) homomorphism. The

structure of an extended strip decomposition guarantees that some parts of G in which

two different particles “interact” are complete to each other. It turns out that in order

to effectively combine the solutions for different particles, we cannot have a triangle in

G whose lists contain two, in some sense edge disjoint, triangles of H (see Figure 7.3Figure 7.3).

Such a property is guaranteed assuming the absence of a double triangle in H. A pair

((a1, a2, a3), (b1, b2, b3)) of elements of T (H) is a double-triangle if for every i ∈ [3] set

{ai, bi} is incomparable. With these notions we can define a trap in H (see Figure 7.4Figure 7.4).

Definition 7.2.1. Let H be a graph. A triple (τ1, τ2, τ3) of triangles from T (H) is a trap

if (τ1, τ2) is a double-triangle, and τ3 is a non-trivial triangle.

Now, an undecomposable graph H is safe if it does not contain a non-bi-arc connected

component that contains a trap.

158

a1 = b2 = c3

a2 = b3 = c1

a3 = b1 = c2

a1 = a2 = a3 b1 = b2 = b3

c1

= c2 = c3

= c2 = c3
a1 = a2 = b3

= c2 = c3

a3 = b2

b1 = c1

Figure 7.4: Examples of traps ((a1, a2, a3), (b1, b2, b2), (c1, c2, c3)).

The section is organized as follows: first, in Section 7.2.1Section 7.2.1 we discuss the preprocessing

phase, and provide two important technical observations. In Section 7.2.2Section 7.2.2 we define ex-

tended strip decompositions and prove two technical lemmas that allow us to work with

a simplified version of these structures. In Section 7.2.3Section 7.2.3 we introduce the main structural

result, which is the existence of so-called neutral functions defined on some subset of the

instance graph. Then, in Section 7.2.4Section 7.2.4, we provide the algorithmic part of Theorem 1.3.5Theorem 1.3.5.

In Section 7.2.5Section 7.2.5 we show that if H is undecomposable but not safe, then the LHom(H)

problem is NP-complete in St,t,t-free graphs, and there is no subexponential-time algo-

rithm solving it, assuming the ETH. In other words, safe graphs are precisely the “easy”

cases of the LHom(H) problem in St,t,t-free graphs for undecomposable graphs H, assum-

ing the ETH. We also discuss the possible ways to extend Theorem 1.3.5Theorem 1.3.5 to decomposable

target graphs.

7.2.1 Consistent instances

Let (G, L) be an instance of LHom(H). We start by describing simple reduction rules

that can be applied to (G, L). For a pair (v, u) of adjacent vertices of G, we define:

L(v, u) = {(a, b) ∈ L(v) × L(u) | ab ∈ E(H), and for every w ∈ N(v) ∩ N(u)

there is c ∈ L(w) s.t. abc ∈ T (H)}.

Note that (a, b) ∈ L(v, u) if and only if (b, a) ∈ L(u, v). For a triangle (v, u, w) ∈ T (G)

we define

L(v, u, w) = {(a, b, c) ∈ V (H)3 | (a, b) ∈ L(v, u), (b, c) ∈ L(u, w), (c, a) ∈ L(w, v)}.

159

Whenever the ordering of the vertices of a triangle (a, b, c) does not matter, we treat it as

an unordered set {a, b, c} on at most three vertices and/or write abc instead of (a, b, c).

Since the sets L(v, u) and L(v, u, w) can be computed in polynomial time for all pairs

and triples of vertices of G, from now on we always implicitly assume they are given with

the instance.

Definition 7.2.2. An instance (G, L) of LHom(H) is consistent if for every v ∈ V (G):

(a) the set L(v) is incomparable,

(b) |L(v)| ⩾ 2,

(c) for every u ∈ N(v) and for every a ∈ L(v) there is b ∈ L(u) such that (a, b) ∈ L(v, u),

(d) for every u ∈ N(v), for every (a, b) ∈ L(v, u) and for every w ∈ N(v) ∩ N(u) there

exists c ∈ L(w) such that (a, b, c) ∈ L(v, u, w).

From combining Definition 7.2.2Definition 7.2.2 (b) and (d) we get the following.

Observation 7.2.3. Let H be a fixed, and let (G, L) be a consistent instance of LHom(H).

Then for every vuw ∈ T (G) we have |L(v, u, w)| ⩾ 2.

We note that an instance (G, L) of LHom(H) can be efficiently transformed into an

equivalent, consistent one.

Lemma 7.2.4. Let H be a fixed graph and let I = (G, L) be an instance of LHom(H).

Then, in time polynomial in |V (G)| we can either solve I or construct a consistent instance

I ′ of LHom(H) such that I ′ is a subinstance of I and I ′ is a yes-instance if and only if

I is a yes-instance.

Proof. We construct an equivalent instance by performing the following steps exhaus-

tively in the given order (formally after each step we obtain a different instance, but we

keep calling it (G, L)). If we remove an element from some L(v), we also remove all

corresponding elements from L(v, u) and L(v, u, w) for all appropriate vertices u, w, so

that the definitions of L(v, u) and L(v, u, w) are still satisfied. If at any point some set

L(v), L(v, u) or L(v, u, w) becomes empty, we return that (G, L) is a no-instance. If at

any point we obtain a graph with no edges and non-empty lists, we return that (G, L) is

a yes-instance.

160

1. For every v ∈ V (G) and every a, b ∈ L(v), if NH(a) ⊆ NH(b), we delete a from L(v).

2. For every u ∈ V (G) and a ∈ L(u), if there exists v ∈ NH(u) such that no pair of

the form (a, b) for some b ∈ L(v) belongs to L(u, v), we delete a from L(u). If a can

be deleted, it means there is no h : (G, L) → H such that h(u) = a.

3. For every pair (u, v) of adjacent vertices of G, and every adjacent a ∈ L(u) and

b ∈ L(v), we check whether for every w ∈ NH(u) ∩ NH(v) there exists c ∈ L(w)

such that (a, b, c) ∈ L(u, v, w). If not, we delete (a, b) from L(u, v).

4. For every v ∈ V (G) such that L(v) = {a} for some a ∈ V (H), we remove v from

G. This is safe, because if for any neighbor u of v there was b ∈ L(u) such that

ab /∈ E(H), then b would have been removed in the second step.

We claim that if none of the above steps can be further applied, then the obtained

instance is indeed consistent. Clearly, the first step guarantees that for each v ∈ V (G)

the set L(v) is incomparable, and the last step guarantees that for each v ∈ V (G) set

L(v) has at least two elements. The property (c) follows from the second step, and the

third step guarantees that (e) holds.

Recall that G has no loops and observe that since

∑
v∈V (G)

|L(v)| +
∑

vu∈E(G)
|L(v, u)| +

∑
vuw∈T (G)

|L(v, u, w)| ⩽ |V (G)|3 · |V (H)|3,

and in each step we remove some vertex from some list, the total number of steps above

is bounded by |V (G)|3 · |V (H)|3. Since each step can be performed in time polynomial in

|V (G)|, the lemma follows.

7.2.2 Known tools and notions

In this section we introduce a few tools that will be crucial for our algorithm.

Let G be a graph and let 0 < α < 1. A vertex separator S in G is α-balanced if every

connected component of G − S has at most α · |V (G)| vertices. Recall also that by T (G)

we denote the set of triangles of a graph G, i.e., triples (a, b, c) such that ab, bc, ac ∈ E(G).

Definition 7.2.5 (Extended strip decomposition). Let G be a graph. An extended

strip decomposition (e.s.d. in short, see Figure 7.5Figure 7.5) (D, η) of G consists of:

161

• an irreflexive graph D and a function η : V (D) ∪ E(D) ∪ T (D) → 2V (G),

• for each xy ∈ E(D), subsets η(xy, x), η(xy, y) ⊆ η(xy),

which satisfy the following properties:

1. {η(o) | o ∈ V (D) ∪ E(D) ∪ T (D)} is a partition of V (G),

2. for each x ∈ V (D) and every distinct y, z ∈ ND(x), the set η(xy, x) is complete to

η(xz, x),

3. each uv ∈ E(G) is contained in one of the sets η(o) for o ∈ V (D) ∪ E(D) ∪ T (D) or:

• u ∈ η(xy, x), v ∈ η(xz, x) for some x ∈ V (D) and y, z ∈ ND(x), or

• u ∈ η(xy, x), v ∈ η(x) for some xy ∈ E(D), or

• u ∈ η(xyz) and v ∈ η(xy, x) ∩ η(xy, y) for some xyz ∈ T (D).

We will sometimes refer to elements of V (D) ∪ E(D) ∪ T (D) as objects of D. An

e.s.d. (D, η) is rigid if

(i) for every xy ∈ E(D) it holds that η(xy, x) ̸= ∅, and

(ii) for every x ∈ V (D) such that x is an isolated vertex it holds that η(x) ̸= ∅.

Note that the size of the graph D in a rigid decomposition is polynomial in |V (G)|. A

rigid e.s.d. (D, η) is nice if D has no vertices of degree 1 nor 2.

For an extended strip decomposition (D, η) we introduce two types of special subsets

of V (G) called particles.11 For each x ∈ V (D), a vertex particle is the set Ax := η(x), and

for each xy ∈ E(D) an edge particle is the set

Axy := η(x) ∪ η(y) ∪ η(xy) ∪
⋃

xyz∈T (D)
η(xyz).

Observe that the number of all particles of (D, η) is O(|V (D)|2). Thus if (D, η) is rigid,

the number of particles is polynomial in |V (G)|. For 0 < α < 1 we say that an extended

strip decomposition (D, η) of G is α-balanced if every particle contains at most α · |V (G)|

vertices of G.
1We point out that usually five different types of particles are defined in the literature (see e.g.,

[1818,5252,9090]). For simplicity, we omitted the types that are not relevant for our work.

162

a

b

c

d

e
f

g

h

η(a)

η(c)

η(d)

η(b)

η(cd)

η(ce)

η(de)

η(cde)

η(e)

η(ef)

η(g)

η(f)

η(h)

η(fh)

η(gf)

η(ef, e) η(ef, f)

Figure 7.5: A graph D (top), and a schematic view of an e.s.d. (D, η) (bottom). Shapes
drawn with narrow black line represent sets η(o) for o ∈ V (D) ∪ E(D) ∪ T (D), green
shapes represent sets η(xy, x) and η(xy, y) for xy ∈ E(D). Thick black lines represent
edges of G: if two sets are joined by a thick continuous (resp., dashed) line, it means that
all (resp., some) of the edges between its elements exist (resp., may exist). Author: Paweł
Rzążewski [5252].

163

The following theorem by Majewski et al. [9090] says that if we remove a small set of

vertices and its neighborhood from an St,t,t-free graph G, we can compute an extended

strip decomposition with useful properties for the remaining part of the graph.

Theorem 7.2.6 ([9090]). Let t ⩾ 1. Given an n-vertex St,t,t-free graph G, one can in

polynomial time output a set P ⊆ V (G) of size O(log n), and a 1/2-balanced rigid extended

strip decomposition of G − N [P].

Let G be a graph and let (D, η) be its extended strip decomposition. For xy ∈

E(D) by ∂(xy) we denote the set η(xy, x) ∪ η(xy, y). For x ∈ V (D) we set potato(x) =⋃
y∈ND(x) η(xy, x). For a triangle xyz ∈ T (D) let

potato(xyz) = (η(xy, x) ∩ η(xy, y)) ∪ (η(xz, x) ∩ η(xz, z)) ∪ (η(yz, y) ∩ η(yz, z)).

We note that for every o ∈ V (D) ∪ T (D) we have NG(η(o)) ⊆ potato(o).

To simplify some descriptions later, we first prove two technical lemmas that allow

us to focus on decompositions with some extra properties. The first one claims that for

any W ⊆ V (G) we can efficiently modify a rigid e.s.d. of G to a rigid e.s.d of G − W .

Note that if (D, η) is an extended strip decomposition of G, a decomposition obtained by

modifying η by removing the vertices of W from the values of η is also an extended strip

decomposition of G′ = G − W , so the challenge here is modifying it into rigid one.

Lemma 7.2.7. Let G be an n-vertex graph, and let (D, η) be its rigid extended strip

decomposition. Let W ⊆ V (G). Then in time polynomial in n we can find a rigid e.s.d.

(D′, η′) of G′ = G − W .

Proof. Let (D, η0) be an e.s.d. of G′ obtained by removing the vertices of W from the

values of η. For simplicity, first modify (D, η0) into an intermediate e.s.d. (D1, η1) by (i)

getting rid of these components of D that do not give rise to non-empty particles with

respect to η0 and (ii) ensuring that for every remaining xy ∈ E(D) that belongs to a

triangle xyz of D and such that η0(xy, x) = ∅ we can easily transfer all the vertices of

η0(xyz) to some other set. This is important, since in the second step we want to create

(D′, η′) by removing such edges xy.

A component C of D is η0-empty if for every o ∈ V (C) ∪ E(C) ∪ T (C) we have

η0(o) = ∅.

164

Claim 7.2.7.1. In time polynomial in n we can transform (D, η0) into an e.s.d. (D1, η1)

of G′ so that

(A1) there is no η1-empty component of D1,

(A2) for every xyz ∈ T (D1) such that η1(xy, x) = ∅ we have η1(xyz) = ∅.

Proof of Claim. First, we construct an auxiliary graph D0, by including in D0 all edges

and vertices of D, except these in η0-empty components of D. As (D, η) is a rigid decom-

position of G, the number of particles of (D0, η0) is polynomial in n, thus this step can

be done in time polynomial in n. Clearly, (D0, η0) is an e.s.d. of G′ that satisfies (A1).

Now, we iteratively modify (D0, η0) into (D1, η1) that satisfies (A1) and (A2). As long

as there exists xyz ∈ T (D1) such that η0(xy, x) = ∅ and η0(xyz) ̸= ∅, we are going to

transfer the elements of the set η0(xyz) either to some vertex particle, or one of the sets

η0(yz) or η0(xz). Formally, we do the following.

• If NG′(η0(xyz)) = ∅, we introduce a new isolated vertex t to D1 and set η1(t) =

η0(xyz) and η1(xyz) = ∅.

• If ∅ ≠ NG′(η0(xyz)) ⊆ η0(yz), set η1(yz) = η0(yz) ∪ η0(xyz) and η1(xyz) = ∅.

• If NG′(η0(xyz)) ∩ η0(yz) ̸= ∅ and NG′(η0(xyz)) ∩ η0(xz) ̸= ∅, set η1(z) = η0(z) ∪

η0(xyz) and η1(xyz) = ∅.

If an η1-empty component was created (note that it is possible in the first case), we remove

it from D1. For all the remaining arguments we set η1 the same as η0. Clearly, in every

of the cases above (D1, η1) is still an e.s.d. of G that satisfies (A1) and if the procedure

above cannot be applied anymore, (D1, η1) also satisfies (A2). ⌟

Next, we show that in time polynomial in n we can transform (D1, η1) into a rigid

e.s.d. (D′, η′) of G′. For that we additionally need to guarantee that for every xy ∈ E(D′)

we have that η(xy, x) ̸= ∅.

To obtain (D′, η′) we again consider an iterative procedure. For each edge xy ∈ E(D1)

where η1(xy, x) = ∅ we do as follows. By property (A2) of (D1, η1), for every z ∈ V (D1)

such that xyz ∈ T (D) we have η1(xyz) = ∅. If η1(xy) = ∅, we remove xy from the graph.

If η1(xy, y) = ∅ but η1(xy) ̸= ∅, we remove xy, introduce a new isolated vertex t to D, and

set η′(t) = η1(xy). If η1(xy, y) ̸= ∅, we also remove xy and then introduce a new vertex

165

t, but now we make t adjacent to y. We set η′(t) = ∅, η′(yt, y) = η′(yt, t) = η1(xy, y) and

η′(yt) = η1(xy). Again, if after any of these steps an η′-empty component was created,

we remove it from D′. For all the remaining arguments of η′, we set their value equal to

their corresponding value of η1. We note that since η1(xyz) = ∅, in each case the obtained

structure is still an e.s.d. of G′.

We apply the above operation iteratively for every xy ∈ E(D1) for which η1(xy, x) = ∅.

Since (D′, η′) can be found in time polynomial in n, and satisfies the statement of the

lemma, this concludes the proof.

The second lemma asserts that under certain assumptions we can turn a rigid e.s.d.

of G into a nice e.s.d. of G without increasing the size of particles.

Lemma 7.2.8. Let 1/2 ⩽ α < 1, and let G be an n-vertex graph. Let (D′, η′) be its α-

balanced rigid extended strip decomposition. Assume that there is no α-balanced separator

of size at most 6∆(G) in G. Then in polynomial time we can find an α-balanced nice

e.s.d. (D, η) of G.

Proof. The idea of the construction is to delete vertices of degree 1 from D′, and then

contract every edge of D′ with at least one endpoint of degree 2 (in both cases adjusting

the function η appropriately). Formally, we exhaustively apply the following operations.

1. For a vertex x ∈ V (D′) of degree 2 whose neighbors are y and z, we remove x and

add an edge yz if it does not exists yet. We include in η(yz) every vertex that

belongs to η′(xy) ∪ η′(x) ∪ η′(xz), and, if yz was already in E(D′), we also include

in η(yz) vertices that belong to η′(yz) ∪ η′(xyz). Then we include in η(yz, y) (resp.,

in η(yz, z)) every vertex that belongs to η′(xy, y) (resp. η′(xz, z)), and, if yz was

already in E(D′), we also include in η(yz, y) (resp. η(yz, z)) vertices that belong to

η′(yz, y) (resp. η′(yz, z)). For all the remaining arguments of η, we set their value

equal to their value for η′.

2. For a vertex x ∈ V (D′) of degree 1 whose neighbor is y, we remove x from V (D′).

We include in η(y) every vertex that belongs to η′(y) ∪ η′(xy) ∪ η′(x). For all the

remaining arguments of η, we set their value equal to their value for η′.

It is straightforward to observe that η is still an e.s.d. of G and if none of the above

operations can be applied, there is no vertices of degree 1 nor 2 in D′. Let D be the

166

graph obtained from D′ this way. Thus it is enough to show that applying one of the

operations above neither impacts the rigidness of the decomposition nor creates a particle

that contains more than αn vertices of G. The first property is straightforward by the

construction, since the initial decomposition is rigid. We observe that for every y ∈ V (D′)

such that deg(y) ⩾ 2 we have that size of potato(y) is at most 2∆(G). To analyze the

size of particles, we consider two cases, depending on the applied operation.

Assume first that we deleted a vertex x of degree 2 from D′ (and added the edge

yz if it was not there yet). Since the size of every particle of (D′, η′) was bounded by

αn, if now (D, η) is not α-balanced, the edge particle Ayz of (D, η) must be larger than

αn ⩾ n/2. Let S := potatoD′(y) ∪ potatoD′(x) ∪ potatoD′(z). Note that since the size of

each particle of (D′, η′) is bounded by αn, the size of each connected component of G − S

that is contained in Ayz is also bounded by αn. Since each other connected component if

G − S must be disjoint with Ayz, then it must be smaller than n − αn ⩽ n/2 and thus S

is an α-balanced separator in G of size 6∆(G), a contradiction.

Now suppose that we applied the second type of operation, i.e., we deleted a vertex

x of degree 1 from D. Since the size of every particle of (D′, η′) was bounded by αn,

again if (D, η) is not α-balanced, then either the particle Ay or Ayz for some z ∈ ND(y)

of (D, η) must be larger than αn. Similarly as before, it is then enough to note that

S := potatoD′(y) is an α-balanced separator in G of size 2∆(G).

Since the initial size of the graph D′ is polynomial in terms of n, and every operation

reduces the number of vertices of D′ by one, the whole procedure can be done in time

polynomial in n. This concludes the proof of the lemma.

Maximmum matchings. As already mentioned, our algorithm will reduce an instance

of LHom(H) to a certain variant of the Maximum Weight Matching problem. An

instance of Maximum Weight Matching* (MWM*) is a tuple (G, U,w, k), where

G is a graph, U is a subset of V (G), w : E(G) → N ∪ {0} is a weight function, and

k ∈ N ∪ {0}. We ask whether there exists a matching M in G such that (i) M covers all

vertices from U , and (ii) w(M) ⩾ k.

By a simple reduction to the Maximum Weight Matching problem we can show

that MWM* can be solved in polynomial time. A proof of this fact can be found e.g.,

in [2828].

167

Lemma 7.2.9 ([2828]). The MWM* problem can be solved in polynomial time.

7.2.3 Safe graphs and neutral functions

This section is devoted to the main structural result that is crucial for the proof of

Theorem 1.3.5Theorem 1.3.5 (a). For a graph H, by R(H) we denote the set of reflexive vertices of H.

We start with the following lemma.

Lemma 7.2.10. Let H be a fixed connected non-bi-arc undecomposable graph that does

not contain a predator nor a trap. Then the set R(H) induces a reflexive clique.

Proof. Assume there are two reflexive, non-adjacent vertices a, b ∈ V (H). Clearly, a and

b are incomparable. This means that there is no non-trivial triangle τ in H, as otherwise

((a, a, a), (b, b, b), τ) is a trap in H. Let P be the set of all induced a-b-paths in H; since

H is connected, P is non-empty.

First, we note that every path P ∈ P consists of reflexive vertices. Indeed, otherwise

consider P ∈ P , let c ∈ V (P) be the first irreflexive vertex on P , and let c′ ∈ V (P)

be its predecessor on P (possibly c′ = a). In particular, c′ is reflexive, and c′ and c are

incomparable. Then (c, c′, c′) is a non-trivial triangle in H, a contradiction.

Now, we note that every P ∈ P has precisely 3 vertices. Otherwise, if P has at least

two (adjacent) internal vertices c, d, then (c, d, c, d) is a predator (as the predecessor of c

belongs to N(c) \ N(d) and the successor of d belongs to N(d) \ N(c)).

Let W = ⋃
P ∈P V (P) \ {a, b}. Since P is non-empty and every P ∈ P has precisely

three vertices, W is non-empty. Moreover, W consists of reflexive vertices, and we note

that W ∪ {a} is a reflexive clique. Otherwise there are vertices c ∈ W and a′ ∈ W such

that ca′ ̸∈ E(H), and (a, c, a, c) is a predator (as b ∈ N(c) \ N(a) and a′ ∈ N(a) \ N(c)).

Let A and B be the connected components of G − W that contain, respectively, a and b.

Clearly, A ̸= B by definition of W .

We claim that A is complete to W . Otherwise, there exists a′ ∈ A and w ∈ W such

that a′w /∈ E(H). We choose a′ so that distA(a, a′) is minimized, clearly a′ ̸= a. Consider

a shortest a-a′ path PA in A. We again observe that all vertices of PA except possibly a′

must be reflexive, as otherwise there is a non-trivial triangle in H. Also, since there is no

predator in H, PA has at most three vertices. Let a′′ be a predecessor of a′ on PA (possibly

a′′ = a). Now note that (a′′, w, w) is a non-trivial triangle in H, since a′ ∈ N(a′′) \ N(w),

168

and b ∈ N(w) \ N(a′′) as A ̸= B, a contradiction. Analogously we can show that B is

complete to W .

Since a, b ∈ A ∪ B we have |A ∪ B| ⩾ 2, and remains to observe that

(A ∪ B, W, V (H) \ (A ∪ B ∪ W))

is an F -decomposition of H, a contradiction.

We need the following definition.

Definition 7.2.11. Let G be a graph and let X ⊆ V (G). We say that a partition

A = {A1, . . . , Ad} of X is a mesh partition, if d ⩾ 3 and

• for every i ∈ [d] we have Ai ̸= ∅,

• for distinct i, j ∈ [d] sets Ai and Aj are complete to each other.

For a mesh partition A of X, denote by GA[X] the graph obtained from G[X] by

removing all edges that have both endpoints in one block of A. In other words, GA[X] is

a complete d-partite spanning subgraph of G[X].

Before we proceed to the formal statement and the proof of the main result of this

subsection, let us briefly discuss the intuition behind it. Assume H is an undecompos-

able graph that contains neither a predator not a trap, and let (G, L) be an instance of

LHom(H). We claim that if X ⊆ V (G) admits a mesh partition A, then there exists

a “canonical” function σ : X → V (H), called the neutral function, such that (i) every

homomorphism from (G[X], L) to H differs from σ on at most one block of A, and (ii)

for every block A of A and every ρ : A → V (H) that respects L, the function that maps

every vertex v ∈ A to ρ(v), and every other vertex v of X to σ(v), preserves all edges

between different blocks of A, i.e., is a homomorphism from (GA[X], L) to H.

Having σ, we can exploit the structure of an extended strip decomposition (D, η)

of G. Observe that for every x ∈ V (D) of degree at least 3, the set potato(x) admits

a mesh partition. Similarly, so does potato(t) for every t ∈ T (D). Since two disjoint

particles can interact with each other only on such potatoes, and we know that each

homomorphisms restricted to a single potato is “almost” equal to σ, we can effectively

combine the solutions returned by recursive calls on the particles of an e.s.d. by reducing

the problem to a variant of the maximum matching problem.

169

Lemma 7.2.12. Let H be a fixed connected non-bi-arc undecomposable graph that does

not contain a predator nor a trap. Let (G, L) be a consistent instance of LHom(H), and

let X ⊆ V (G). Assume that there exists a mesh partition A = {A1, A2, A3} of X. Then:

• There exists a unique function σA : X → V (H) called the neutral function such that

1. for every v ∈ X it holds that σA(v) ∈ L(v),

2. for each i ∈ [3], and each function ρ : Ai → V (H) that respects L, the function

h : X → V (H) defined as

h(v) =


ρ(v) if v ∈ Ai,

σA(v) otherwise,

is a homomorphism from GA[X] to H respecting L,

3. for each homomorphism h : (G, L) → H there exists i ∈ [3] such that h|X\Ai
≡

σA|X\Ai
.

Moreover, σA can be found in time polynomial in |X|.

• If there exists a set Y ⊆ V (G) that admits a mesh partition B = {B1, B2, B3}, such

that B1 ⊆ A1, B2 ⊆ A2, and B3 ∩ (A1 ∪ A2) = ∅, then for every v ∈ B1 ∪ B2 we

have σA(v) = σB(v).

Proof. We prove Lemma 7.2.12Lemma 7.2.12 in a series of steps, each of them in form of a short claim.

First, we note that every list contains at most one reflexive vertex.

Claim 7.2.12.1. Let v ∈ V (G). Then L(v) contains at most one reflexive vertex. In

particular, L(v) contains at least one irreflexive vertex.

Proof of Claim. If a, b ∈ L(v) are reflexive, then ab ∈ E(H) by Lemma 7.2.10Lemma 7.2.10. By the

consistency of (G, L), a and b are incomparable, and thus (a, b, a, b) is a predator in H, a

contradiction. The fact that L(v) contains an irreflexive vertex follows now from the fact

that |L(v)| ⩾ 2. ⌟

We need the next claim to say that there exists a non-trivial triangle in H.

Claim 7.2.12.2. The graph H contains a non-trivial triangle.

170

Proof of Claim. First, suppose that there are at least two blocks of A, say A1, A2, that

contain vertices v ∈ A1, u ∈ A2 with irreflexive lists, i.e., every a ∈ L(v) ∪ L(u) does not

have a loop. Fix some w ∈ A3 and note that by the definition of a mesh partition, vuw is a

triangle in G. Let a ∈ L(v). Since (G, L) is consistent, there exist b ∈ L(u) and c ∈ L(w)

such that (a, b, c) ∈ L(v, u, w), so in particular, ab, bc, ac ∈ E(H). By the assumption, a

and b are irreflexive. If c is also irreflexive, abc is a non-trivial triangle in H and we are

done. Thus assume c is reflexive. By Claim 7.2.12.1Claim 7.2.12.1, there exists irreflexive c′ ∈ L(w).

Again, by the consistency of (G, L) we have some irreflexive a′ ∈ L(v), b′ ∈ L(u) (possibly

a′ = a or b′ = b) such that a′b′, b′c′, c′a′ ∈ E(H). Now a′b′c′ is an irreflexive (and thus

non-trivial) triangle in H.

So now w.l.o.g. assume that all vertices of X with irreflexive lists belong to A1. Fix

some v ∈ A1, u ∈ A2 and w ∈ A3 and let b ∈ L(u) and c ∈ L(w) be reflexive. By

Lemma 7.2.10Lemma 7.2.10, bc ∈ E(H). Since |L(u)|, |L(w)| ⩾ 2, there exist irreflexive b′ ∈ L(u) \ {b}

and c′ ∈ L(w) \ {c}. Clearly, we can assume that bb′, cc′ /∈ E(H) as otherwise either

(b′, b, b) or (c′, c, c) is a non-trivial triangle. Moreover, if b′c, bc′ ∈ E(H) then b and c are

incomparable, reflexive vertices and (b, c, b, c) is a predator, a contradiction. Thus without

loss of generality we assume that bc′ /∈ E(H). By consistency there exist a ∈ L(v) and

irreflexive b′′ ∈ L(u) so that (a, b′′, c′) ∈ L(v, u, w). Again, bb′′ /∈ E(H) as otherwise we

are done.

If now a is irreflexive, then ab′′c′ is an irreflexive triangle in H and again we are

done. Thus we can assume that a is reflexive, and that there exists irreflexive a′ ∈ L(v).

If aa′ ∈ E(H), then (a′, a, a) is a non-trivial triangle, so assume otherwise. Again, by

consistency, there is b′′′ ∈ L(u) and c′′ ∈ L(w) such that (a′, b′′′, c′′) ∈ L(v, u, w). If both

are irreflexive, then we have a irreflexive triangle. If b′′′ = b or c′′ = c then (a, b, a, b) or,

respectively, (a, c, a, c) is a predator in H (as b′′ ∈ N(a) \ N(b) and a′ ∈ N(b) \ N(a), or

c′ ∈ N(a) \ N(c) and a′ ∈ N(c) \ N(a)), a contradiction. ⌟

Let {i, j, ℓ} = [3], and let u ∈ Aj, w ∈ Aℓ. If a ∈ L(v) for v ∈ Ai is such that for every

(b, c) ∈ L(u, w) we have (a, b, c) ∈ L(v, u, w), we say that a is v-neutral for (u, w).

Fix a non-trivial triangle τ3 in H, it exists by the previous claim. We aim to show

that for every v ∈ Ai there exists a unique a ∈ L(v) such that for every u ∈ Aj, w ∈ Aℓ

the vertex a is v-neutral for (u, w). This will be done in the next two claims. Then we

define σA(v) = a and show that in this way we obtain a function that satisfies the first

171

statement of the lemma.

Claim 7.2.12.3. Let {i, j, ℓ} = [3], and let v ∈ Ai. For every u ∈ Aj, w ∈ Aℓ there exists

a v-neutral vertex a ∈ L(v) for (u, w).

Proof of Claim. Assume otherwise and let u ∈ Aj, w ∈ Aℓ be such that there is no v-

neutral vertex for (u, w). Let a1 ∈ L(v). Since a1 is not v-neutral for (u, w), there exist

b2 ∈ L(u) and c2 ∈ L(w) such that (b2, c2) ∈ L(u, w) and (a1, b2, c2) /∈ L(v, u, w). This

means that either (a1, b2) /∈ L(v, u) or (a1, c2) /∈ L(v, w). By symmetry we assume that

the first case holds.

Since (G, L) is consistent, by Definition 7.2.2Definition 7.2.2 (c)(c) and (d)(d), there exist b1 ∈ L(u) and

c1 ∈ L(w) such that τ1 := (a1, b1, c1) ∈ L(v, u, w). On the other hand, as (b2, c2) ∈ L(u, w),

there exist a2 ∈ L(v) such that τ2 := (a2, b2, c2) ∈ L(v, u, w). Clearly, a1 ̸= a2, and b1 ̸= b2,

as (a1, b2) /∈ L(v, u). Observe that a1 and a2 (respectively b1 and b2) are incomparable by

Definition 7.2.2Definition 7.2.2 (a)(a). Now if c1 ̸= c2, then (τ1, τ2, τ3) is a trap in H, a contradiction. Thus,

we must have c1 = c2.

As (G, L) is consistent, |L(w)| ⩾ 2 and there exists c′ ̸= c1 in L(w). Moreover,

there exist a′ ∈ L(v) and b′ ∈ L(u) such that τ ′ := (a′, b′, c′) ∈ L(v, u, w). Now observe

that we must have a′ = a2 and b′ = b1, as otherwise either (τ1, τ ′, τ3) or (τ2, τ ′, τ3) is a

trap in H (a′ = a1 and b′ = b2 is impossible since (a1, b2) /∈ L(v, u)). It implies that

(a2, b1, c2) = (a2, b1, c1) ∈ L(v, u, w) (as (a2, b1) = (a′, b′) ∈ L(v, u), (a2, c2) ∈ L(v, w) and

(b1, c1) ∈ L(u, w)).

However, by our assumption, a2 is not a v-neutral vertex for (u, w). So there exist

(b3, c3) ∈ L(u, w) such that (a2, b3, c3) /∈ L(v, u, w). But since (b3, c3) ∈ L(u, w), there

is a3 ∈ L(v) such that τ ′
3 = (a3, b3, c3) ∈ L(v, u, w). Clearly, a3 ̸= a2. Now consider

(τ2, τ ′
3, τ3), ((a2, b1, c2), τ ′

3, τ3) and ((a2, b1, c′), τ ′
3, τ3). As the first one is not a trap, we get

b2 = b3 or c2 = c3. From the second one we have either b1 = b3 or c2 = c3, and from the

third one either b1 = b3 or c′ = c3. As b1 ̸= b2 and c2 = c1 ̸= c′, we obtain that b1 = b3

and c2 = c3. Thus (a2, b3, c3) = (a2, b1, c1) ∈ L(v, u, w), a contradiction. ⌟

Now we observe that if a ∈ L(v) is v-neutral for some (u, w), where u ∈ Aj, w ∈ Aℓ,

then it is v-neutral for every (u′, w′) such that u′ ∈ Aj, w′ ∈ Aℓ.

Claim 7.2.12.4. Let i ∈ [3], and let v ∈ Ai. There exists a ∈ L(v) such that for every

j, ℓ such that {i, j, ℓ} = [3] and every u ∈ Aj, w ∈ Aℓ it holds that a is v-neutral for (u, w).

172

Proof of Claim. By Claim 7.2.12.3Claim 7.2.12.3, for every u ∈ Aj and w ∈ Aℓ there exists a ∈ L(v)

that is v-neutral for (u, w). We will show that if u, u′ ∈ Aj and w, w′ ∈ Aℓ, and a1 ∈ L(v)

is v-neutral for (u, w) and a2 ∈ L(v) is v-neutral for (u′, w′), then either a1 is v-neutral

for (u′, w′) or a2 is v-neutral for (u, w). Note this is sufficient to obtain the statement of

the lemma.

Observe that it is enough to prove this statement assuming that u = u′. Indeed, then

we can call it once for u and w ̸= w′, and then for u′ ̸= u and w′. Therefore, assume

for contradiction that we have a1, a2 ∈ L(v) such that there exist u ∈ Aj, w, w′ ∈ Aℓ,

b1, b2 ∈ L(u), c1 ∈ L(w) and c2 ∈ L(w′), such that τ1 := (a1, b1, c1) ∈ L(v, u, w), τ2 :=

(a2, b2, c2) ∈ L(v, u, w′) but (a2, b1, c1) /∈ L(v, u, w), (a1, b2, c2) /∈ L(v, u, w′). This in

particular means that a1 ̸= a2.

First, we show that b1 ̸= b2. Assume otherwise. By Claim 7.2.12.3Claim 7.2.12.3, there exists a

vertex c′
1 ∈ L(w) that is w-neutral for (v, u). In particular, (a1, c′

1), (a2, c′
1) ∈ L(v, w).

Clearly, c′
1 ̸= c1, since (a2, b1, c′

1) ∈ L(v, u, w). Let b′ ∈ L(u) be a vertex distinct from b1.

By Definition 7.2.2Definition 7.2.2 (d)(d), there are vertices a′ ∈ L(v), and c′ ∈ L(w) such that (a′, b′, c′) ∈

L(v, u, w). Since neither (τ1, (a′, b′, c′), τ3) nor ((a2, b1, c′
1), (a′, b′, c′), τ3) is a trap in H,

we have a1 = a′ or c1 = c′, and a2 = a′ or c′
1 = c′. Since a1 ̸= a2 and c′

1 ̸= c1,

this is equivalent to saying that we either have a1 = a′ and c′
1 = c′ or a2 = a′ and

c1 = c′. Note however, that the latter case implies that (a2, c1) ∈ L(v, w), and we obtain

that (a1, a2, c1, c′
1) is a predator in H, a contradiction. Thus, (a1, b′, c′

1) ∈ L(v, u, w).

Now there exists a w′-neutral vertex c′
2 ∈ L(w′), and since (a1, b′) ∈ L(v, u), we have

(a1, b′, c′
2) ∈ L(v, u, w′). Note that since (a1, c2) /∈ L(v, w′), we have c′

2 ̸= c2. We obtain

that ((a2, b1, c2), (a1, b′, c′
2), τ3) is a trap in H, a contradiction.

Therefore we can assume that b1 ̸= b2. Since (a1, b1) ∈ L(v, u) there exists c′
2 ∈ L(w′)

such that (a1, b1, c′
2) ∈ L(v, u, w′). Observe that if c′

2 ̸= c2 then ((a1, b1, c′
2), τ2, τ3) is a

trap in H. Thus, c′
2 = c2 and hence (a1, c2) ∈ L(v, w′) and (b1, c2) ∈ L(u, w′). Similarly

we can show that since (a2, b2) ∈ L(v, u), we must have that (a2, c1) ∈ L(v, w) and

(b2, c1) ∈ L(u, w).

Since (G, L) is consistent, there exist c′′
1 ∈ L(w) distinct from c1, and a′

1 ∈ L(v),

b′
1 ∈ L(u) such that τ ′

1 = (a′
1, b′

1, c′′
1) ∈ L(v, u, w). Observe that we either have a′

1 = a2 and

b′
1 = b1 or a′

1 = a1 and b′
1 = b2, as otherwise either ((a1, b1, c1), τ ′

1, τ3) or ((a2, b2, c1),′1 , τ3)

is a trap in H. However, the first case implies that (a2, b1) ∈ L(v, u), so (a2, b1, c1) ∈

173

L(v, u, w), and the second case that (a1, b2) ∈ L(v, u), so (a1, b2, c2) ∈ L(v, u, w′). In both

we reach a contradiction. ⌟

We note that the vertex a given by Claim 7.2.12.4Claim 7.2.12.4 must be unique. Indeed, from the

consistency of the instance we know that for every vertex b ∈ L(u) for some u ∈ Aj, j ̸= i

there exists c ∈ L(w) for every w ∈ Aℓ and ℓ ∈ [3]\{i, j} such that (b, c) ∈ L(u, w). Thus,

if a is v-neutral, a must be in particular adjacent to all vertices in ⋃u∈X\Ai
L(u). If now

L(v) contains two vertices a, a′ that satisfy Claim 7.2.12.4Claim 7.2.12.4, then for any two elements b, b′

of L(u) for some u ∈ Aj ∪ Aℓ the tuple (a, a′, b, b′) is a predator, a contradiction.

We are ready to define σA. For every v ∈ X we set σA(v) to be the v-neutral vertex

a ∈ L(v), given by Claim 7.2.12.4Claim 7.2.12.4. The condition 1. follows from the definition of σA,

now let us show that the conditions 2. and 3. are satisfied. For that, we first prove yet

another property of neutral vertices.

Claim 7.2.12.5. Let i ∈ [3], let Let v ∈ Ai, u ∈ Aj for distinct i, j ∈ [3] and let a ∈ L(v).

Then aσA(u) ∈ E(H).

Proof of Claim. Let w ∈ Aℓ, for ℓ ∈ [3] \ {i, j}. By Definition 7.2.2Definition 7.2.2 (c)(c), there exists

c ∈ L(w) such that (a, c) ∈ L(v, w). As σA(u) is u-neutral for (v, w), we have that

(a, σA(u), c) ∈ L(v, u, w), so in particular (a, σA(u)) ∈ L(v, u), thus aσA(u) ∈ E(H). ⌟

Now, condition 2. is a straightforward consequence of Claim 7.2.12.5Claim 7.2.12.5. To see 3. con-

sider any homomorphism h : (G, L) → H and assume that there are distinct i, j ∈ [d] and

v ∈ Ai, u ∈ Aj such that h(v) ̸= σA(v) and h(u) ̸= σA(u). As u and v belong to distinct

sets of A, we have that vu ∈ E(G), and therefore h(v)h(u) ∈ E(H). By Claim 7.2.12.5Claim 7.2.12.5,

σA(v)σA(u), σA(v)h(u), h(v)σA(u) ∈ E(H). Thus, (σA(v), h(v), σA(u), h(u)) is a preda-

tor, a contradiction.

To conclude the proof of the first statement of Lemma 7.2.12Lemma 7.2.12 we note that since the

proof is constructive, σA can be found in time polynomial in |X|.

It remains to prove the second statement of the lemma. Note that by symmetry and

by the definitions of σA and σB, it is enough to show that if v ∈ A1 and a ∈ L(v) is

v-neutral for some (u, w), where u ∈ A2, w ∈ A3, then it is v-neutral for every (u′, w′)

such that u′ ∈ A2, w′ ∈ B3.

Claim 7.2.12.6. Let v ∈ A1. There exists a ∈ L(v) such that for every u, u′ ∈ A2, w ∈ A3

and w′ ∈ B3 vertex a is v-neutral for (u, w) and for (u′, w′).

174

Proof of Claim. Let a1, a2 ∈ L(v). We again observe that it is enough to take u = u′

and prove that if a1 is neutral for (u, w), and a2 is v-neutral for (u, w′), then either

a1 is neutral for (u, w′) or a2 is neutral for (u, w). By Definition 7.2.2Definition 7.2.2 (b)(b), there exist

distinct b1, b2 ∈ L(u). By Definition 7.2.2Definition 7.2.2 (c)(c) there exist c1 ∈ L(w) and c2 ∈ L(w′)

such that (b1, c1) ∈ L(u, w) and (b2, c2) ∈ L(u, w′). Since a1 is v-neutral for (u, w),

a1b1, a1b2 ∈ E(H). Similarly, as a2 is v-neutral for (u, w′), we have a2b1, a2b2 ∈ E(H).

Thus (a1, a2, b1, b2) is a predator in H, unless a1 = a2. ⌟

Similarly as before, we note that if there are two vertices a, a′ ∈ L(v) that satisfy

Claim 7.2.12.6Claim 7.2.12.6, then for any u ∈ A2 and b, b′ ∈ L(u) tuple (a, a′, b, b′) is a predator. That

concludes the proof of Lemma 7.2.12Lemma 7.2.12.

As a corollary we obtain the following.

Corollary 7.2.13. Let H be a fixed connected non-bi-arc undecomposable graph that does

not contain a predator nor a trap. Let (G, L) be a consistent instance of LHom(H), and

let X ⊆ V (G). Let d ⩾ 3 and assume that there exists a mesh partition A = {A1, . . . , Ad}

of X. Then:

(a) There exists a unique function σA : X → V (H) called the neutral function such that

1. for every v ∈ X it holds that σA(v) ∈ L(v),

2. for each i ∈ [d], and each function ρ : Ai → V (H) that respects L, function

h : X → V (H) defined as

h(v) =


ρ(v) if v ∈ Ai,

σA(v) otherwise,

is a homomorphism from GA[X] to H respecting L,

3. for each homomorphism h : (G, L) → H there exists i ∈ [d] such that h|X\Ai
≡

σA|X\Ai
.

Moreover, σA can be found in time polynomial in |X|.

(b) If there exists a set Y ⊆ V (G) that admits a mesh partition B = {B1, B2, B3}, such

that B1 ⊆ A1, B2 ⊆ A2, and B3 ∩ (A1 ∪ A2) = ∅, then then for every v ∈ B1 ∪ B2 we

have σA(v) = σB(v).

175

Proof. The case d = 3 follows from the statement of Lemma 7.2.12Lemma 7.2.12, so we can assume

that d ⩾ 4. Let A′ = {A1, A2, A3 ∪ . . . ∪ Ad−1}, B1 = {A1, A2, Ad} and B2 = {A2, A3 ∪

. . . ∪ Ad−1, Ad}, and let σA, σB1 , σB2 be given by Lemma 7.2.12Lemma 7.2.12. We define

σA(v) =


σA′(v) if v ∈ ⋃

A∈A′ A,

σB1(v) if v ∈ Ad.

Now by the second item of Lemma 7.2.12Lemma 7.2.12 we have

• for every v ∈ A1 ∪ A2 we have σA′(v) = σB1(v),

• for every v ∈ A2 ∪ . . . ∪ Ad−1 we have σA′(v) = σB2(v),

• for every v ∈ A2 ∪ Ad we have σB1(v) = σB2(v).

It is straightforward to verify that statements of the lemma follow from the respective

conditions given by Lemma 7.2.12Lemma 7.2.12 for σA, σB1 and σB2 .

7.2.4 The algorithm

The only remaining tool that we need before we prove Theorem 1.3.5Theorem 1.3.5 (a) is how to compute

a solution for an instance (G, L) recursively, using an extended strip decomposition (D, η)

of G. We say that a subinstance (G′, L′) of (G, L) is a local subinstance if G′ is contained

in some particle of (D, η).

Lemma 7.2.14. Let H be a fixed connected non-bi-arc undecomposable graph that does

not contain a predator nor a trap, let t ∈ N, and let (G, L) be a consistent instance of

LHom(H). Let (D, η) be a nice e.s.d. of G. Suppose that we have an algorithm A

that solves LHom(H) on every local subinstance of (G, L). Then we can solve (G, L) by

running A on a (possibly empty) family I of at most nO(1) local subinstances of (G, L).

All the additional computations can be done in time polynomial in |V (G)|.

Proof. We prove the lemma by reducing (G, L) to an instance (D′, U,w, k) of MWM*

problem, so that we can use Lemma 7.2.9Lemma 7.2.9 to solve it.

Let V ′ ⊆ V (D) be the set of vertices of positive degree in D. First, we note that for

every x ∈ V ′ we have that G[potato(x)] admits a mesh partition Px = {η(xy, x)}y∈ND(x)

(recall that in a nice e.s.d. every vertex in V ′ has degree at least 3). Thus, for every

176

x ∈ V (D), we can call Corollary 7.2.13Corollary 7.2.13 to obtain the neutral function σPx : potato(x) →

V (H). For simplicity, we will be writing σx instead of σPx .

Next, we note that for every t = xyz ∈ T (D) we have that G[potato(t)] admits a

mesh partition Qt = {η(xy, x) ∩ η(xy, y), η(xz, x) ∩ η(xz, z), η(yz, y) ∩ η(yz, z)}. We call

Lemma 7.2.12Lemma 7.2.12 to obtain the function σQt : potato(t) → V (H) as in the statement of the

lemma. We denote it by σt for simplicity.

Claim 7.2.14.1. Let t = xyz ∈ T (D). For every v ∈ η(xy, x) ∩ η(xy, y) we have that

σx(v) = σy(v) = σt(v).

Proof of Claim. Observe that by symmetry of x and y it is enough to show that σx(v) =

σt(v). This follows from applying Corollary 7.2.13Corollary 7.2.13 to A = {η(xz, x)}z∈N(x) and B =

{η(xy, x) ∩ η(xy, y), η(xz, x) ∩ η(xz, z), η(yz, y) ∩ η(yz, z)}. ⌟

Auxiliary definitions. Let f : W → V (H) for some W ⊆ V (G) be such that for every

v ∈ W we have f(v) ∈ L(v). We define a function Lf : V (G) → 2V (H) as

Lf (v) =


L(v) ∩ ⋂u∈NG(v)∩W NH(f(u)) if NG(v) ∩ W ̸= ∅,

L(v) otherwise.

Observe that f is a fixed mapping on W that respects lists L. Intuitively, Lf are obtained

by trimming lists L so that for any homomorphism g : (G − W, Lf) → H, if f is also

homomorphism, then the disjoint union of f and g (as they have disjoint domains) is a

homomorphism from G to H. Formally, we state it as follows.

Claim 7.2.14.2. Let f : W → V (H) for some W ⊆ V (G). Let g : V (G)\W → V (H) be

such that for every v ∈ V (G) \ W we have g(v) ∈ Lf (v). For every adjacent u ∈ W, v ∈

V (G) \ W it holds that f(u)g(v) ∈ E(H).

Let xy ∈ E(D). We say that a function f : ∂(xy) → V (H) is x-neutral (resp. y-

neutral) if f is equivalent to σx on the set η(xy, x) (resp. to σy on the set η(xy, y)). We

say that f : ∂(xy) → V (H) is neutral if f is both x- and y-neutral. Observe that there is

at most one neutral function for each xy ∈ E(D): recall that ∂(xy) = η(xy, x) ∪ η(xy, y)

and σx|η(xy,x) and σy|η(xy,y) are unique, but for some v ∈ η(xy, x)∩η(xy, y) it may happen

that σx(v) ̸= σy(v) (if xy does not belong to a triangle of D).

For every xy ∈ E(D) we define up to four homomorphisms as follows.

177

(S1) If there exists f : (G[η(xy)], L) → H such that f |∂(xy) is neutral, we fix one such

homomorphism and denote it by f⊥
xy.

(S2) Let g ≡ σy|potato(y)\η(xy,y). If there exists a homomorphism f : (G[η(xy)∪η(y)], Lg) →

H such that f |η(xy,x) ≡ σx, we fix one such homomorphism and denote it by f y
xy. By

switching the role of x and y we analogously define fx
xy (if it exists).

(S3) Let g ≡ σx|potato(x)\η(xy) ∪ σy|potato(y)\η(xy). If there exists f : (G[Axy
xy], Lg) → H, we

fix one such homomorphism and denote it by fxy
xy .

Let Ixy be the set of at most four instances of LHom(H) considered in the steps (S1)-(S3).

Clearly, each element of Ixy is a local subinstance of (G, L). For every xy ∈ E(D) let Fxy

consist of these elements f⊥
xy, f y

xy, fx
xy or fxy

xy , that were defined above. We observe that

the definition of f⊥
xy, f y

xy and fxy
xy together with the property 3 of neutral functions (stated

in Corollary 7.2.13Corollary 7.2.13) imply the following.

Claim 7.2.14.3. Let h : (G, L) → H. Then for every xy ∈ E(D):

1. if h|∂(xy) is neutral, then f⊥
xy ∈ Fxy,

2. if h|∂(xy) is neither x-neutral nor y-neutral, then fxy
xy ∈ Fxy,

3. if h|∂(xy) is x-neutral but not y-neutral, then f y
xy ∈ Fxy.

Recall that for every x ∈ V (D) we have that G[potato(x)] admits a mesh partition

{η(xy, x)}y∈ND(x). Thus, by Corollary 7.2.13Corollary 7.2.13.3, for every h : (G, L) → H there is at

most one y ∈ ND(x) such that h|∂(xy) is not x-neutral. Similarly, since for every xyz ∈

T (D), the graph G[potato(xyz)] admits a mesh partition {η(xy, x) ∩ η(xy, y), η(xz, x) ∩

η(xz, z), η(yz, y) ∩ η(yz, z)}, there is at most one element e ∈ {xy, yz, xz} such that h|∂(e)

is not neutral. We obtain the following.

Claim 7.2.14.4. For every h : (G, L) → H and for every x ∈ V (D), there is at most one

y ∈ ND(x) such that h|∂(xy) is not x-neutral. Similarly, for every xyz ∈ T (D) at most

one of h|∂(xy), h|∂(yz), and h|∂(xz) is not neutral.

Next, we define subsets V , E , and T of, respectively V (D), E(D), and T (D). Intu-

itively, they consist of these objects o, for which the neutral function defined on some

subset of NG[η(o)] (in case of V and T) or of η(o) (in case of E) cannot be extended to

178

η(o). Formally, let E be the set of these edges xy ∈ E(D) for which f⊥
xy does not exist,

and let

V = {x ∈ V (D) | (G[η(x)], Lσx) is a no-instance},

T = {t ∈ T (D) | (G[η(t)], Lσt) is a no-instance}.

For every o ∈ V (D)∪T (D)\ (V ∪T), let fo be a fixed homomorphism from (G[η(o)], Lσo)

to H. Last, let δ : E(D) → N be such that δ(xy) = |{z ∈ V (D) | xyz ∈ T }|.

Constructing an instance of the matching problem. Now we show how to con-

struct the instance (D′, V ,w, k) of MWM* as follows.

The set of vertices of D′ is V (D) ∪ {ve | e ∈ E(D)}. We define E ′ = E(D) ∪

{xvxy, yvxy | xy ∈ E(D)}. The graph D′ is a (spanning) subgraph of (V (D′), E ′), obtained

by deleting elements e ∈ E ′ if one of the following conditions is satisfied.

(R1) If e = xy ∈ E(D) and fxy
xy /∈ Fxy.

(R2) If e = xvxy /∈ E(D) and fx
xy /∈ Fxy.

We extend the definition of δ by setting δ(xy) = 0 for every xy ∈ E(D′) \ E(D). For

every e ∈ E(D′) we define

s(e) =


1 if e ∈ E or e ∈ {xvxy, yvxy} for some xy ∈ E ,

0 otherwise.

For every e ∈ E(D′) define w(e) = δ(e) + s(e), and let k = |T | + |E|. That concludes the

definition of (D′,w, V , k). It remains to show that (D′,w, V , k) is equivalent to (G, L).

This is proven in the following two claims (each covering one of the implications).

Claim 7.2.14.5. If (G, L) → H then there exists a matching in D′ of weight at least k

that covers V.

Proof of Claim. First, we construct a subset M ⊆ E ′. We add e ∈ E ′ to M if the following

conditions are satisfied:

(C1) e = xy ∈ E(D), and h|∂(xy) is neither x-neutral nor y-neutral,

179

(C2) e = xvxy for some xy ∈ E(D), and h|∂(xy) is y-neutral but not x-neutral.

We need to prove that (M1) M ⊆ E(D′), (M2) M is a matching, (M3) M covers V , and

(M4) ∑e∈M w(e) ⩾ k.

First, we verify that (M1) follows from the definition of E(D′) and M . Consider

e ∈ M .

1. If e = xy ∈ E(D), by (C1), h|∂(xy) is neither x-neutral nor y-neutral. Claim 7.2.14.3Claim 7.2.14.3

asserts that fxy
xy ∈ Fxy, and therefore the edge e is not deleted in step (R1).

2. If e = xvxy for some xy ∈ E(D), by (C2), h|∂(xy) is y-neutral but not x-neutral. By

Claim 7.2.14.3Claim 7.2.14.3 fx
xy ∈ Fxy, and therefore the edge e is not deleted in step (R2).

To see that (M2) holds, assume that there exists x ∈ V (D′) and distinct y, z ∈ ND′(x)

such that xy, xz ∈ M . If x /∈ V (D), then y, z ∈ V (D) and x = vyz. Since yvyz ∈ M , we

have that h|∂(yz) is z-neutral but not y-neutral. On the other hand, zvyz ∈ M implies that

h|∂(yz) is y-neutral but not z-neutral, a contradiction. Similarly we can show contradiction

if x, y ∈ V (D) and z = vxy: since xy ∈ M , h|∂(xy) is not x-neutral nor y-neutral. However,

since xvxy ∈ M , we have that h|∂(xy) is y-neutral (and not x-neutral).

Hence, the remaining case is that x ∈ V (D), y ∈ {y′, vxy′} for some y′ ∈ ND(x), and

z ∈ {z′, vxz′} for some z′ ∈ ND(x) \ {y′}. The fact that xy ∈ M implies that h|∂(xy′) is

not x-neutral, and xz ∈ M implies that h|∂(xz′) is not x-neutral. However, recall that by

Claim 7.2.14.4Claim 7.2.14.4 there is at most one x′ ∈ ND(x) such that h|∂(xx′) is not x-neutral, so we

again reach a contradiction. We can conclude that M is a matching.

To observe that (M3) M covers V , consider a vertex x ∈ V . By the definition of V ,

(G[Ax], Lσx) ̸→ H. This and the definition of Lσx imply that there is no f : (G[η(x) ∪

potato(x)], L) → H such that f ≡ σx on potato(x). By Lemma 7.2.12Lemma 7.2.12.3. this is equivalent

to saying that there exists y ∈ ND(x) such that the homomorphism h|∂(xy) is not x-neutral.

Hence, by the definition of M , either xy ∈ M or xvxy ∈ M and thus x is covered.

It remains to prove (M4), i.e., to show the inequality

∑
e∈M

w(e) =
∑
e∈M

δ(e) +
∑
e∈M

s(e) ⩾ |T | + |E| = k.

Observe that if ∑e∈M δ(e) = ∑
xy∈M |{z ∈ V (D) | xyz ∈ T }| < |T |, it means that there

exists a triangle xyz ∈ T such that {xy, xz, yx} ∩ M = ∅. However, the definition of M

180

implies that in a such case h|∂(xy), h|∂(xz) and h|∂(yz) are neutral. This is equivalent to

saying that h is equivalent to σt on potato(t) (as, by Claim 7.2.14.1Claim 7.2.14.1, σt ≡ σx ≡ σy on

potato(t)). However, the latter is a contradiction with the definition of T .

On the other hand, if ∑e∈M s(e) < |E|, then there exists an edge xy ∈ E such that

{xy, xvxy, yvxy} ∩ M = ∅. By the definition of M this means that h|∂(xy) is neutral, and

this contradicts the fact that xy ∈ E . In summary, we get that ∑e∈M δ(e) +∑
e∈M s(e) ⩾

|T | + |E|, which proves the desired inequality, and proves that if (G, L) is a yes-instance

of LHom(H), then (D′,w, V , k) is a yes-instance of MWM∗. ⌟

Claim 7.2.14.6. If there exists a matching in D′ of weight at least k that covers V then

(G, L) → H.

Proof of Claim. Assume that (D′,w, V , k) is a yes-instance of MWM∗ that admits a

solution M . Recall that |T | + |E| = k ⩽
∑

e∈M w(e) = ∑
e∈M δ(e) +∑

e∈M s(e). We start

by showing that ∑e∈M δ(e) ⩽ |T | and ∑e∈M s(e) ⩽ |E|. Assume otherwise and note that

then we either have ∑e∈M δ(e) ⩾ |T | + 1 or ∑e∈M s(e) ⩾ |E| + 1. Suppose first that

∑
e∈M

δ(e) =
∑

xy∈E(D)∩M

|{z ∈ V (D) | xyz ∈ T }| ⩾ |T | + 1

holds. This means, precisely, that there exists xyz ∈ T such that |{xy, yz, xz} ∩ M | ⩾ 2,

which is impossible, since xy, xz, yz induce a triangle in D′ and M is a matching. Similarly,

if ∑
e∈M

s(e) =
∑

xy∈E

∑
e∈{xy,xvxy ,yvxy}

|{e} ∩ M | ⩾ |E| + 1,

then there exist an edge xy ∈ E such that |{xy, xvxy, yvxy} ∩ M | ⩾ 2. This again is

impossible, since xy, xvxy, yvxy induce a triangle in D′ and M is a matching.

Now, since |T |+ |E| ⩽ ∑
e∈M δ(e)+∑e∈M s(e), from the fact that ∑e∈M δ(e) ⩽ |T | and∑

e∈M s(e) ⩽ |E|, we can conclude that ∑e∈M δ(e) = |T | and ∑
e∈M s(e) = |E|. This, in

turn, implies that for every t = xyz ∈ T , and for every e = xy ∈ E , we have, respectively,

that |{xy, yz, xz} ∩ M | = 1, and that |{xy, xvxy, yvxy} ∩ M | = 1.

Recall that for o ∈ V (D)∪T (D)\(V ∪T) the function fo is some fixed homomorphism

from (G[η(o)], Lσo) to H. We will define the function h : V (G) → V (H) using the

181

functions from the set

F = {fo | o ∈ V (D) ∪ T (D) \ (V ∪ T)} ∪
⋃

xy∈E(D)
Fxy,

and then show that h is a homomorphism that respects lists L.

For every o ∈ V (D) ∪ E(D) ∪ T (D) and for every v ∈ V (G) we set h(v) as follows.

(F1) If v ∈ η(x) such that x is not covered by M , then h(v) = fx(v).

(F2) If v ∈ η(xyz) such that {xy, yz, zx} ∩ M = ∅, then h(v) = fxyz(v).

(F3) If v ∈ η(xy) such that {xy, xvxy, yxy} ∩ M = ∅, then h(v) = f⊥
xy(v).

(F4) If v ∈ η(xy) ∪ η(x) such that xvxy ∈ M , then h(v) = fx
xy(v).

(F5) If v ∈ Axy
xy such that xy ∈ M , then h(v) = fxy

xy (v).

We need to prove that (H1) for every v ∈ V (G) the vertex h(v) is well-defined, in particular

that the appropriate function f ∈ F exists, (H2) h respects the lists L, and (H3) h is a

homomorphism.

We start by proving (H1). Consider first the case that v ∈ η(x) for some x ∈ V (D).

Clearly, since M is a matching in D′, x is covered by at most one edge of M . If x is not

covered by M , then v is considered precisely once in (F1). We note that fx ∈ F since

x /∈ V (as it is not covered by M). If x is covered by an edge e ∈ M , then e is either of

type xvxy or xy for some y ∈ ND(x). Hence, v is considered precisely once in, respectively,

(F4) or (F5), and the fact that fx
xy or, respectively fxy

xy , belongs to F follows from the

existence of the edge xvxy or xy in D′.

Assume that v ∈ η(t) for some t = xyz ∈ T (D). Again, since M is a matching, at

most one edge of t belongs to M . If none of them belongs to M , then v is considered

precisely once in (F2). Note that ft ∈ F as otherwise t ∈ T , and we already showed that

if t ∈ T then |{xy, yz, xz} ∩ M | = 1. Otherwise, one of the edges of t, say xy, belongs to

M . Then v is considered precisely once in (F5), and the fact that fxy
xy ∈ F follows from

the fact that xy ∈ E(D′).

Last, assume that v ∈ η(xy) for some xy ∈ E(D). If {xy, xvxy, yvxy} ∩ M = ∅, then

v is considered in (F3). Since |{xy, xvxy, yvxy} ∩ M | = 0, xy /∈ S, and thus f⊥
xy ∈ F .

If xy ∈ M , then xvxy, yvxy /∈ M and v is considered only in (F5). Again, the fact that

182

fxy
xy ∈ F follows from the fact that xy ∈ E(D′). Last, by symmetry we can assume that

xvxy ∈ M . Then xy, yvxy /∈ M , and v is considered once in (F4), and the fact that fx
xy ∈ F

follows from xvxy ∈ E(D′). That concludes the proof of (H1).

Observe that the property (H2) follows from the definitions of elements of F . Indeed,

each f ∈ F is a homomorphism from some G′ to H that respects lists L′, where (G′, L′)

is a subinstance of (G, L), and thus for every v ∈ V (G) we must have h(v) ∈ L(v).

It remains to show (H3), i.e., that for an edge uv ∈ E(G) we have h(u)h(v) ∈ E(H).

Note that by the definition of an extended strip decomposition, we can divide the analysis

into the following three cases:

(i) there is o ∈ V (D) ∪ E(D) ∪ T (D) such that u, v ∈ η(o),

(ii) there are o ∈ V (D) ∪ T (D) and e ∈ E(D) such that u ∈ η(o) and v ∈ potato(o),

(iii) there are xy, yz ∈ E(D) such that u ∈ η(xy, y), v ∈ η(yz, y).

Before we proceed to the subcases, we note that the definition of h implies that if v ∈

η(xy, x) for some xy ∈ E(D), and xy, xvxy /∈ M , then h|∂(xy) is x-neutral, so in particular

h(v) = σx(v).

Observe that case (i) is straightforward: if u, v ∈ η(o), by definition of h there exists

a unique homomorphism f ∈ F such that h(u) = f(u) and h(u) = f(v). Since f is a

homomorphism, we obtain that h(u)h(v) ∈ E(H).

If (ii) holds, then v ∈ η(xy) for some xy ∈ E(D). Note that by the definition of an

extended strip decomposition we either have that v ∈ η(xy, x) and u ∈ η(x) for some xy ∈

E(D) (note that the case v ∈ η(xy, y) and u ∈ η(y) is symmetric), or v ∈ η(xy, x)∩η(xy, y)

and u ∈ η(xyz) for some xyz ∈ T (D).

Consider the first subcase and note that v ∈ potato(x). If x is not covered by M , then

we have h(u)h(v) = fx(u)σx(v). Recall that the definition of fx, implies that fx(u) ∈

Lσx(u). Therefore, by Claim 7.2.14.2Claim 7.2.14.2 (for f = σx and g = fx), we have fx(u)σx(v) ∈

E(H). If xve ∈ M then we have h(u)h(v) = fx
xy(u)fx

xy(v) ∈ E(H) by (F4). If e ∈ M ,

then h(u)h(v) = f e
e (u)f e

e (v) ∈ E(H) by (F5). Finally, if there exists y′ ∈ ND(x) \ {y}

such that {xy′, xvxy′} ∩ M ̸= ∅, let e′ = xy′. Then again h(v) = σx(v) and h(u) = fx
e′(u)

or h(u) = f e′
e′ (u). Thus h(u) ∈ Lg(u), where g is defined, respectively, as in (S2) or (S3),

and h(u)σx(v) = h(u)g(v) ∈ E(H) by Claim 7.2.14.2Claim 7.2.14.2.

183

Consider the second subcase, i.e., v ∈ η(xy, x)∩η(xy, y) and u ∈ η(xyz). If {xy, yz, xz}∩

M = ∅ then by (F3) and/or (F4) we have that h(v) = σx(v), and by Claim 7.2.14.1Claim 7.2.14.1,

h(v) = σxyz(v). Thus by (F2) we have that h(u)h(v) = fxyz(u)σxyz(v). By definition of

fxyz we have that fxyz(u) ∈ Lσxyz(u), hence fxyz(u)σxyz(v) ∈ E(H) by Claim 7.2.14.2Claim 7.2.14.2. If

e = xy ∈ M , then we have h(u)h(v) = fxy
xy (u)fxy

xy (v) ∈ E(H) by (F5). Last, assume that

{yz, xz} ∩ M ̸= ∅, by symmetry, yz ∈ M . It implies that h(v)h(u) = σx(v)f yz
yz (u). Recall

that f yz
yz (u) ∈ Lg(u), where g is defined as in (S3). In particular, f yz

yz (u)σxyz(v) ∈ E(H).

By Claim 7.2.14.1Claim 7.2.14.1 σxyz(v) = σx(v), and thus h(v)h(u) = f yz
yz (u)σx(v) ∈ E(H). That

concludes the proof of (ii).

It remains to show (iii), i.e., that if u ∈ η(xy, y), v ∈ η(yz, y), then h(u)h(v) ∈ E(H).

If none of xy, yvxy, yz, yvyz belongs to M , we have that h(u)h(v) = σy(u)σy(v) ∈ E(H).

Otherwise, since M is a matching, precisely one of h(u) = σy(u), h(v) = σy(v) is true,

by symmetry say h(u) = σy(u). From Lemma 7.2.12Lemma 7.2.12.2 it follows that h(u)σy(v) ∈ E(H).

This gives the desired statement. ⌟

The number of local subinstances. To conclude the proof of the lemma, we note

that for every xy ∈ E(D) we solve at most 4 local subinstances (G′, L′) from Ixy, and for

every o ∈ V (D) ∪ T (D) we solve one instance when defining V and T . As the number of

particles in a rigid e.s.d. is polynomial in |V (G)|, so is the size of I. By Lemma 7.2.9Lemma 7.2.9, the

instance (D′,w, V , k) can be solved in polynomial time. This concludes the proof.

We now have all the necessary tools to prove Theorem 1.3.5Theorem 1.3.5 (a).

Proof of Theorem 1.3.5Theorem 1.3.5 (a). Let (G′, L′) be an instance of LHom(H). Clearly, without

loss of generality we can assume that G and H are connected, as otherwise we can solve

the problem independently for each pair (G′, H ′) of connected components G′ of G and

H ′ of H (trimming the lists appropriately). Moreover, we we assume that H is non-bi-arc,

as otherwise the problem can be solved in polynomial time.

Our algorithm will be recursive, taking as an input an instance (G′, L′) of LHom(H)

and a rigid e.s.d. (D′, η′) of G′. Initially, we set D′ = ({x}, ∅) and η′(x) = V (G′). Let

n′ = |V (G′)|.

We start by applying Lemma 7.2.4Lemma 7.2.4 to (G′, L′). We either solve (G′, L′) or obtain an

equivalent, consistent subinstance (G, L) of LHom(H). Let W = V (G′) \ V (G) and

n = |V (G)|. We can assume that n is sufficiently large, as otherwise we can now solve

184

the instance (G, L) in constant time by brute-force. By Lemma 7.2.7Lemma 7.2.7, we can obtain from

(D′, η′), in time polynomial in n′, a rigid e.s.d. of G (note that n may be significantly

smaller than n′). We keep calling it (D′, η′).

Now we distinguish three cases.

Case 1: G contains a vertex v of degree at least
√

n·2|V (H)|. This implies that there

exists a list L̃ ⊆ V (H) assigned to at least ℓ :=
√

n neighbors of v. By Observation 7.1.4Observation 7.1.4

there exist a ∈ L(v) and b ∈ L̃ such that ab ̸∈ E(H). We branch on assigning a to v;

either we remove a from L(v) or color v with a and remove b from the lists of all neighbors

of v. In other words, we define L1, L2 : V (G) → 2V (H) as

L1(u) =



{a} if u = v,

L(u) \ {b} if L(u) = L̃,

L(u) otherwise,

L2(u) =


L(u) \ {a} if u = v,

L(u) otherwise,

Then we call the algorithm recursively on instances (G, L1) and (G, L2) and return that

(G, L) is a yes-instance if and only if at least one of (G, L1) and (G, L2) is a yes-instance.

If Case 1 does not hold, for every Y ⊆ V (G) of size at most 6
√

n · 2|V (H)| we check

whether Y is a 1/2-balanced separator in G.

Case 2: there exists Y ⊆ V (G) of size at most 6
√

n ·2|V (H)| that is a 1/2-balanced

separator. We do one step of the divide & conquer approach as follows. Let V1, . . . , Vq

be the sets of vertices of connected components of G−Y , each of size at most n/2. Recall

that for every g : Y → V (H) that respects L we can define Lg : V (G) \ Y → 2V (H) as

Lg(v) =


L(v) ∩ ⋂u∈NG(v)∩Y NH(g(u)) if NG(v) ∩ Y ̸= ∅,

L(v) otherwise.
(7.1)

We call the algorithm recursively on instances (G[Vi], Lg) for every i ∈ [q], and return

that (G, L) is a yes-instance if and only if there exists g such that (G[Vi ∪ Y], Lg) and is

a yes-instance for every i ∈ [q].

185

Case 3: ∆(G) ⩽
√

n·2|V (H)| and there is no 1/2-balanced separator of size at most

6
√

n · 2|V (H)| in G. Then we proceed depending on whether (D′, η′) is a 3/4-balanced

decomposition of G or not.

Subcase 3.1: (D′, η′) is not a 3/4-balanced decomposition of G. We start by

applying Theorem 7.2.6Theorem 7.2.6 to G (recall that G is St,t,t-free as an induced subgraph of G′) to

obtain, in time polynomial in n, a set P consisting of O(log n) vertices of G, and a 1/2-

balanced rigid e.s.d. (D, η) of G − N [P]. Let X = N [P]. Then, for each homomorphism

ρ : (G[X], L) → H we call the algorithm recursively for the instance (G − X, Lρ) and

(D, η), where Lρ is defined similarly as Lg in (7.1)(7.1). We return that (G, L) is a yes-instance

if and only if there exists ρ such that (G − X, Lρ) is a yes-instance.

Subcase 3.2: (D′, η′) is a 3/4-balanced decomposition of G. We apply Lemma 7.2.8Lemma 7.2.8

to (D′, η′) to obtain a nice e.s.d. (D, η) of G. Then, we solve (G, L) by Lemma 7.2.14Lemma 7.2.14,

which requires calling the algorithm recursively on nO(1) local subinstances (G′′, L′′) of G.

That concludes the description of the algorithm, its correctness is straightforward to

verify in cases 1, 2 and 3.2, and in case 3.2 is a consequence of Lemma 7.2.14Lemma 7.2.14.

Running time. It remains to analyze the running time. We measure the running time in

terms of ||(G, L)|| = ∑
v∈V (G) |L(v)|−1. We note that the consistency of (G, L) guarantees

that removing p ⩾ 1 vertices from G decreases the measure by at least p, as each L(v)

has at least two elements.

If the condition in Case 1 holds, the processing of the instance takes time polynomial

in n, and then we call the algorithm on two instances of measure bounded by, respectively,

||(G, L)|| −
√

n (as we remove at least
√

n elements of the lists) and ||(G, L)|| − 1. We call

these subinstances type (1a) and (1b), respectively.

If the condition in Case 1 does not hold, we exhaustively search for a 1/2-balanced

separator of size 6
√

n · 2|V (H)|. This can be done in time nO(
√

n). Then, in Case 2, we call

the algorithm on 2O(
√

n) instances, each of measure at most ||(G, L)||−n/2. We call these

subinstances type (2).

Otherwise, in Case 3, we check whether the given e.s.d. (D′, η′) is 3/4-balanced. If

no, we find the set X and a new rigid e.s.d. in time polynomial in n (by Theorem 7.2.6Theorem 7.2.6).

Then, we recurse on at most 2O(
√

n log n) instances that correspond to the choices of ρ :

186

X → V (H). Each such instance is of measure at most ||(G, L)||. These are subinstances

of type (3).

If (D′, η′) is 3/4-balanced, we run the polynomial-time algorithm from Lemma 7.2.8Lemma 7.2.8

to obtain a nice e.s.d., and solve the instance by calling the algorithm recursively on nO(1)

instances, each of measure at most ||(G, L)|| − n/4. These are subinstances of type (4).

We estimate the number of calls of the algorithm as follows. Let T be the recursion

tree of the calls of the algorithm for the instance (G, L). The nodes of T correspond to

calls at subinstances (G′, L′) of (G, L). Similarly as in the proof of Theorem 7.1.3Theorem 7.1.3, for a

node of T that corresponds to a call at instance (G′, L′) we define a local subtree that

consists of all descendant calls where the measure of the corresponding instance (G′′, L′′)

is at least 0.99||(G′, L′)||. We greedily find a partition Π of nodes of T into local subtrees.

Clearly, each path from the root to a leaf of T intersects O(log n) elements of Π.

Consider a local subtree T ′, whose root corresponds to a call at an instance (G′, L′)

with n′ vertices. We claim that T ′ has 2O(
√

n′ log n′) leaves. First, we note that (i) the nodes

of T ′ that correspond to the subinstances of type (2) and (4) can occur only as the leaves

of T ′, since each child of such node corresponds to an instance whose measure is at most

3/4 of the parent’s measure. We also note that (ii) there is at most one node of type (3)

for every leaf-to-root path in T ′. Indeed, assume that there exist two nodes τ1 and τ2 in

T ′ corresponding to, respectively, instances (G1, L1) and (G2, L2) of type (3), such that

τ2 is the highest descendant of τ1 with this property. Let n′
1 = |V (G1)| and n′

2 = |V (G2)|.

In τ1 we compute an e.s.d. (D1, η1) whose each particle is of size at most n′
1/2. It follows

from the description of the algorithm that in the call τ2 we are given a decomposition

(D′
1, η′

1) that is obtained from (D1, η1) by applying Lemma 7.2.7Lemma 7.2.7 and Lemma 7.2.8Lemma 7.2.8. Since

τ2 is of type (3), (D′
1, η′

1) is not 3/4-balanced, i.e., there exists a particle of size larger than

3n′
2/4. Note that the only way in which this could happen is that n′

2 ⩽ 2n′
1/3, which is a

contradiction with the definition of a local subtree T ′, as 0.99n′
1 ⩽ n′

2 ⩽ 2n′
1/3.

Let T ′′ be obtained by contracting all edges leading to a node of type (1b). The type

of the resulting new node is inherited from the parent of the node of type (1b). Thus, all

the internal nodes of T ′′ are either of type (1a) or (3), and the number of their children

in T ′′ is bounded, respectively, by O(n′) and (n′)O(
√

n′). Moreover, the number of leaves

of T ′′ is at least half of the number of leaves of T ′. Therefore, the maximum length of a

leaf-to-root path P in T ′′ is O(
√

n′), since at most three nodes of P (the root, the leaf

187

and one node of type (3)) are not of type (1a). We conclude that the number of leaves of

T ′′ (and thus of T ′) is also 2O(
√

n′ log n′).

Now we observe that T ′ has at most 2O(
√

n′ log n′) nodes. Indeed, note that the only

possibility that a node τ of T ′ is of degree 2 is when τ is of type (3) (this corresponds

to the situation when the set P , given by Theorem 7.2.6Theorem 7.2.6, is empty). However, by (ii), we

know that the number of such nodes in T ′ is at most the number of leaves of T ′. As the

number of leaves is bounded by 2O(
√

n′ log n′), so is the total number of nodes of T ′.

Last, consider a tree T ′′′ obtained from T by contracting each local subtree T ′ to one

vertex. As each vertex of T has at most 2O(
√

n log n) children, each internal node of T ′′′ has

at most 2O(
√

n log n) · 2O(
√

n log n) = 2O(
√

n log n) children. As each leaf-to-root path in T ′′′ is

of length at most O(log n), the total number of nodes in T ′′′ is at most 2O(
√

n log2 n). Since

each local subtree has 2O(
√

n′ log n′) nodes, we obtain that the total number of nodes of T

is 2O(
√

n log2 n).

This concludes the proof of Theorem 1.3.5Theorem 1.3.5 (a).

7.2.5 Lower bounds and generalizations

Now, we complete the dichotomy stated in Theorem 1.3.5Theorem 1.3.5 by showing that if an unde-

composable graph H is not safe, then there exists t ∈ N such that the LHom(H) problem

is NP-complete and there is no subexponential-time algorithm that solves it in St,t,t-free

graphs unless the ETH fails.

Proof of Theorem 1.3.5Theorem 1.3.5 (b). If H contains a predator, then the statement follows from

Theorem 1.3.4Theorem 1.3.4 (b), as Pt-free graphs are a subclass of St,t,t-free graphs. Hence, assume

that there exists a trap (τ1, τ2, τ3) = ((a1, b1, c1), (a2, b2, c2), (a3, b3, c3)) in H.

Auxiliary gadgets. We start by defining a ternary relation T = {τ1, τ2} on vertices of

H. By Theorem 6.3.2Theorem 6.3.2, there exists a list-T -gadget (FT , L, (x1, x2, x3)). Define the graph

F ′
T to be the graph FT with edges x1x2, x1x3, x2x3 added (if they do not already exist)

and observe that since a1b1c1 and a2b2c2 are triangles, (F ′
T , L, (x1, x2, x3)) is still a list-T -

gadget. Next, define a binary relation O = {(a1, c3), (a2, a3), (a2, b3)}. Let (FO, L, (y1, y2))

be the list-O-gadget constructed by Theorem 6.3.2Theorem 6.3.2.

We reduce from Pos-1-in-3-Sat (see the appendix for details). In Pos-1-in-3-Sat,

for a given set of variables U = {u1, . . . , uN} and clauses C = {C1, . . . , CM}, such that

188

{a1, a2}

{c1, c2}
{b1, b2}

{a3, b3, c3}

Figure 7.6: An example of a variable gadget, an occurrence gadget and a clause gad-
get, and how they are connected with each other. The vertices with the same lists are
marked by the same vertex pattern. The list-T -gadget (FT , L, (x1, x2, x3)), depicted in
red, ensures that its interface vertices are mapped either to a1, b1, c1 or to a2, b2, c2. The
occurrence gadget (F O, L, (y1, y2)), depicted in orange, guarantees that its interface ver-
tices are mapped either to a1, a3, a2, b3 or a2, c3. The list-W -gadget (F W , L, (z1, z2, z3))
depicted in green, guarantees that one of its interface vertices is mapped to a3, one to b3
and one for c3 (recall that we may have b3 = c3. The black edges are extra edges added
to the graph G to make it St,t,t-free.

every clause contains at most 3 variables and all of them are non-negated, we ask if there

exists a truth assignment f : U → {0, 1} such that for every clause C ∈ C we have that

precisely one literal is mapped to 1.

We define an instance (G, L) of LHom(H) as follows. For every ui ∈ U that occurs ki

times in clauses in C, consider a ki-ary relation Ai = {(a1, . . . , a1), (a2, . . . , a2)}. We con-

struct an list-Ai-gadget (Qi, L, (x′
1, . . . , x′

ki
)) (which we call a variable gadget) as follows.

We introduce ki copies of (F ′
T , L, (x1, x2, x3)), denote the j-th copy by (F ′j

T , Lj, (xj
1, xj

2, xj
3)).

For every even j we identify the vertex xj
1 with xj−i

1 , and the vertex xj
2 with xj+i

2 . Equiv-

alently, for every odd j we identify xj
2 with xj−i

2 , and xj
1 with xj+i

1 (see Figure 7.6Figure 7.6). We

define (x′
1, . . . , x′

ki
) to be (x1

3, . . . , xki
3) and note that all these vertices must be mapped

either to a1 or to a2. This will correspond, respectively, to setting ui to true or to false.

To create a clause gadget, we recall that {a3, b3, c3} is a non-trivial triangle, i.e., either

a3b3c3 is a simple triangle, which implies that all 2-subsets of {a3, b3, c3} are incomparable,

or a3 = b3 and a3b3, a3c3 ∈ E(H). Define W = {(a3, b3, c3), (b3, c3, a3), (c3, a3, b3)}. By

Theorem 6.3.2Theorem 6.3.2, we obtain a list-W -gadget (F W , L, (z1, z2, z3)). Again, modify F W to

obtain F W ′ by adding edges z1z2, z2z3, z3z1. For every Cj ∈ C we introduce W -gadget

189

(F W ′
j, L, (zj

1, zj
2, zj

3)).

We connect variable gadgets with clause gadgets using the occurrence gadgets. If the

ℓ-th occurrence of the variable ui appears in the clause Cj, we introduce the O-gadget

(F O, L, (y1, y2)) and identify y1 and y2, respectively, with x′
ℓ ∈ V (Qi), and with one of the

vertices zj
1, zj

2, zj
3 of V (F W ′

j). That concludes the construction.

It is straightforward to verify that the properties of the gadgets ensure that there

exists a truth assignment f : U → {0, 1} that satisfies all the clauses if and only if there

exists a homomorphism h : (G, L) → H. Moreover, let t′ be the maximum integer such

that there exists induced Pt′,t′,t′ path in some of the gadgets introduced by Theorem 6.3.2Theorem 6.3.2,

and let t = t′ + 2.

We claim that G is St,t,t-free. Assume for contradiction that there G contains an

induced St,t,t. Let vc the its vertex of degree 3. First, note that no interface vertex belongs

to more than two gadgets. If vc is an interface vertex of a variable (resp. clause) gadget

Qi and some other gadget F O, then, without loss of generality, one of the other interface

vertices of Qi must be a neighbor of vc in St,t,t. However, in this case Qi contains an

induced path Pt−1 (that in particular does not use interface vertices of Qi), a contradiction

with the definition of t. On the other hand, if vc is in a gadget F but is not an interface

vertex of it, each of the components of St,t,t − vc must contain an interface vertex of F .

This is also a contradiction, since either there are only two distinct interface vertices of

F (in F is an O-gadget) or they induce a triangle (in all other cases). We obtain that G

is St,t,t-free. This concludes the proof.

Decomposable target graphs. We note that Theorem 1.3.5Theorem 1.3.5 (b) works for any target

graph H that contains a non-safe graph H ′ as an induced subgraph—as the instance

produced by Theorem 1.3.5Theorem 1.3.5 (b) for LHom(H ′) is also an instance of LHom(H). One

could try to extend the definition of safe graphs to decomposable graphs that does not

contain non-safe undecomposable induced subgraphs, and try to show that for every such

graph H there is an algorithm solving LHom(H) in subexponential time in St.t.t graphs

for every t ∈ N.

However, the problem seems to be more complicated, and unfortunately, the above

definition does not seem to be the correct one. Note that the graph H depicted on

Figure 7.7Figure 7.7 (left) does not contain a non-safe undecomposable induced subgraph, but still,

it can be shown that there is t ∈ N such that LHom(H) is NP-complete in St,t,t-free

190

F

K

Z

f1 f2

k

a b

F

K

Z

H1

H2

f1 f2

k

f

a b

k

a b

f1 f2

Figure 7.7: An example of a graph H that does not contain a non-safe indecomposable
induced subgraph (left). An example of a graph H and its factor H2, such that H does
not contain a trap, but ((f, f, f), (a, a, a), (k, k, d)) is a trap in H2 (right).

graphs and there is no subexponential-time algorithm to solve it unless the ETH fails.

On the other hand, the graph H depicted on Figure 7.7Figure 7.7 (right) does not even contain

a trap, but it can be decomposed in a way that a trap appears in one if its factors. This,

in turn, suggests that solving LHom(H ′) for some H ′ ∈ H may actually be harder than

solving LHom(H), so the idea that it is enough to restrict to undecomposable target

graphs, that worked for predacious graphs, may not work here either. Indeed, if H does

not have a predator, it cannot appear in H1 or H2.

7.3 Possible extensions of the results

Dependence of the target graph and the forbidden subgraph Observe that the

forbidden induced subgraph in instances constructed in Theorem 1.3.4Theorem 1.3.4 (b) depends on

the target graph H. One might ask if this is necessary—perhaps we could improve the

construction to make the graph Pt-free, where t does not depend on H, as it was the case

in Theorem 7.1.6Theorem 7.1.6. The following example shows that in some cases this is impossible.

Proposition 7.3.1. For every t ⩾ 1 there exists a bipartite graph Ht and an integer

t′ > t, such that:

1. LHom(Ht) can be solved in polynomial time in Pt-free graphs,

2. LHom(Ht) is NP-complete in Pt-free graphs and cannot be solved in subexponential

time, unless the ETH fails.

191

2t − 1

0

2t

1

. . .

. . .

t + 1

t

a

b

a′

b′

Figure 7.8: The graph Ht from Proposition 7.3.1Proposition 7.3.1.

Proof. We can safely assume that t ⩾ 3, as P2-free graphs have no edges and thus

LHom(H) is trivial on these graphs. Let Ht be constructed as follows. We start with an

even cycle with consecutive vertices {0, 1, . . . , 2t−1}. Then we add vertices a, a′, b, b′, and

edges (t + 1)a, tb, ab, aa′, and bb′ (see Figure 7.8Figure 7.8). Observe that vertices 0, 1, . . . , 2t − 1

induce a cycle of length at least 6, so the complement of Hk is not a circular-arc graph

(recall Theorem 5.1.6Theorem 5.1.6 and the notion of obstruction). On the other hand, (t, a, t + 1, b)

is a predator. Finally, one can readily verify that Hk is undecomposable, so the second

statement follows from Theorem 7.1.7Theorem 7.1.7.

Now let us prove the first statement. Let (G, L) be an instance of LHom(H) such

that G is Pt-free. If G is not connected, we can solve the problem separately for each

connected component. Thus assume G is connected. The crucial observation is that in

any homomorphism h : G → Ht, either h−1({0, 1}) = ∅, or h−1({t, t + 1, a, b, a′, b′}) = ∅.

Indeed, suppose that there exists h : G → Ht, and vertices u, v of G, such that h(u) ∈

{0, 1}, and h(v) ∈ {t, t + 1, a, b, a′, b′}. Let Q be an induced u-v-path in G, it exists as G

is connected. As G is Pt-free, we know that Q has at most t − 1 vertices. Now observe

that the colors of consecutive vertices of Q form an h(u)-h(v)-walk in Ht. However, a

shortest walk in Ht, starting in {0, 1} and terminating in {t, t+1, a, b, a′, b′} has t vertices,

a contradiction.

Thus given an instance (G, L) of LHom(Ht), where G is Pt-free, we can reduce it to

solving instances of LHom(Ht − {0, 1}) and instances of LHom(Ht − {t, t + 1, a, b, a′, b′})

independently. One can verify that each of these two target graphs is a complement of

a circular-arc graph (as none contains an obstruction), so each of the instances can be

solved in polynomial time.

Note that Proposition 7.3.1Proposition 7.3.1 implies an analogous result for St,t,t-free graphs in case

when H is predacious.

192

The Hom(H) problem in F -free graphs. Here we briefly discuss the consequences

of the theorems proven in this chapter for the non-list variant of the homomorphism

problem. We start by recalling that in case of the Hom(H) problem, we can restrict our

considerations to connected non-trivial core graphs H for which the Hom(H) problem is

NP-complete, i.e., non-bipartite and irreflexive. This in particular means that H is unde-

composable, i.e., H does not admit any of the decompositions introduced in Chapter 5Chapter 5.

Indeed, observe that in each case the existence of such decomposition implies that there

exist two vertices u, v ∈ V (H) such that N(u) ⊆ N(v). If H is a core, this is however a

contradiction with Observation 3.1.1Observation 3.1.1.

Recall that focusing the LHom(H) problem in F -free graphs where F is a path or

a subdivided claws was motivated by the result of Piecyk and Rzążewski [101101, 102102] that

for all other connected graphs F the problem is NP-complete and cannot be solved in

subexponential time unless the ETH fails. We point out that a general classification of

the Hom(H) problem in these other F -free graphs is still open and seem to be more

challenging than the list version (for partial results see [1616, 2828, 110110]), here, however, we

are going to focus on our work for Pt-free and St,t,t-free graphs.

Pt-free graphs. We first consider the case when F is an induced path on t vertices.

Since we can assume that H is non-trivial, connected, irreflexive and undecomposable,

this simplifies the definition of predacious graphs. We say that a 4-tuple (a1, b1, a2, b2)

of vertices of H is an incomparable C4 if (a1, b1, a2, b2) are consecutive vertices of a (not

necessarily induced) cycle C4 such that {a1, a2} and {b1, b2} are incomparable sets. It

is straightforward to observe that a non-trivial core H is predacious if H contains an

incomparable C4. We also note that if H is a core, then, since H is ramified, any C4 is

an incomparable C4. We call a graph square-free if it does not contain C4 as a subgraph.

It follows that we can restate Theorem 1.3.4Theorem 1.3.4 (a) as follows.

Theorem 7.3.2. Let H be a square-free core. Then, for every t ∈ N, the Hom(H)

problem can be solved in time nO(log2 n) in n-vertex Pt-free graphs.

Consider the graph HB depicted on Figure 7.9Figure 7.9 (left), called the Brinkman graph. It

can be verified by exhaustive computer search that K3 × HB is a core. Clearly, both

K3 and HB are non-predacious, as none of them contains C4 as a subgraph. By com-

bining Theorem 7.3.2Theorem 7.3.2 with Observation 3.2.2Observation 3.2.2 (5)(5) we can solve Hom(H) in time nO(log2 n)

193

in n-vertex Pt-free graphs However, as shown on Figure 7.9Figure 7.9 (right), K3 × HB contains a

predator.

Figure 7.9: The Brinkmann graph HB (left) with a subgraph P3 distinguished in red, and
illustration that the graph HB × K3 contains a C4 as a subgraph (right).

This observation can be generalized as follows.

Corollary 7.3.3. Let H be a non-trivial core with factorization (H1, . . . , Hm). If for

every i ∈ [m] the graph Hi is square-free, then, for every t ∈ N, the Hom(H) problem can

be solved in time nO(log2 n) in n-vertex Pt-free graphs. □

If it comes to lower bounds the situation becomes more complicated. Although we

are not able to deliver a full dichotomy for the Hom(H) problem in Pt-free graphs, we

are still able to provide certain lower bounds. First, we note that combining some results

that we proved before we can show the lower bound when the target graph is additionally

assumed to be projective.

Theorem 7.3.4. Let H be a non-trivial, projective graph that contains C4 as a subgraph.

Then there exists t ∈ N, such that the Hom(H) problem cannot be solved in time 2o(n) in

n-vertex Pt-free graphs, unless the ETH fails.

Proof. We reduce from the LHom(H) problem in Pt-free graphs. Let (G, L) be an n-

vertex instance of LHom(H) such that G is Pt-free. Since H is projective, Corollary 3.2.6Corollary 3.2.6

asserts that for each v ∈ V (G) there exists an L(v)-construction (Fv, φv, xv).

We perform the reduction in two steps. First, we define an instance (G′, φ) of Ex-

tHom(H) as follows. We take the graph G and, for every v ∈ V (G), we introduce the

L(v)-construction (Fv, φv, xv). Then, for every v ∈ V (G) we identify v with xv. This way

we obtain the graph G′, the function φ arises from taking the union of all the functions

φv over all v ∈ V (G). We note that as G is Pt-free, it follows from the definition of G′

194

that the longest path in G′ has at most t′ = 2 maxv∈V (G) |V (Fv)|+ t vertices. Indeed, note

that the way we build G′ guarantees that for every v ∈ V (G) the vertices of V (Fv) \ {xv}

occur consecutively in any path in G′. Moreover, if such a path P contains vertices from

V (Fv) \ {xv}, at least one endpoint of P belongs to V (Fv) \ {xv}. Thus, an induced path

in G′ contains vertices from at most two such sets, and at most t − 1 vertices from G.

Since the size of each Fv depends only on |V (H)|, which is a constant, t′ is also a constant.

Now, having an instance (G′, φ) of ExtHom(H) such that G′ is Pt′+1-free, we use

Theorem 3.2.9Theorem 3.2.9 to transform it into an instance G′′ of Hom(H), such that G′ is an induced

subgraph of G′′ and |V (G′′)| = |V (G′)| + |V (H)|. We claim that there exists t′′ ∈ N such

that G′′ is Pt′′-free. Consider a longest induced path P in G′′. Clearly, in contains at most

|V (H)| vertices that do not belong to V (G′). Since G′ is Pt′+1 free, there are at most t′

consecutive vertices of V (G′) that appear on P . Thus P has at most (|V (H)| + 1) · t′

vertices, and G′′ is Pt′′-free for t′′ = (|V (H)| + 1) · t′ + 1.

Thus, if we can solve Hom(H) in time 2o(|V (G′′)|) = 2o(n) in Pt′′-free graphs, we can

solve LHom(H) in Pt-free graphs in time 2o(n), and this, by Theorem 1.3.4Theorem 1.3.4, contradicts

the ETH.

Looking from the broader perspective, we can provide a lower bound for the general

case if we additionally assume Conjecture 1Conjecture 1 and Conjecture 2Conjecture 2. Following these premises,

we conjecture that the lower bound for the Hom(H) problem needs to take into consid-

eration the factorization (w.r.t. the direct product) of the target graph H.

Conjecture 3. Let H be a non-trivial graph with factorization (H1, . . . , Hm). If there

exists i ∈ [m] such that Hi is not square-free, then there exists t ∈ N such that the

Hom(H) problem in NP-complete and cannot be solved in time 2o(n) in n-vertex Pt-free

graphs, unless the ETH fails.

St,t,t-free graphs. Next, we turn our attention to St,t,t-free graphs. Again, since we

can assume that H is non-trivial, connected, irreflexive and undecomposable, this sim-

plifies the definition of safe graphs: these are precisely graphs that are triangle-free and

square-free, or, equivalently, with girth at least 5. Analogously as in the Pt-free graphs

case, a straightforward consequence of Theorem 1.3.5Theorem 1.3.5 (a) and Observation 3.2.2Observation 3.2.2 (5)(5) is the

following.

195

Theorem 7.3.5. Let H be a core with factorization (H1, . . . , Hm). If for every i ∈ [m]

graph Hi is of girth at least 5, then, for every t ∈ N, the Hom(H) problem can be solved

in time 2O(
√

n log2 n) in n-vertex St,t,t-free graphs.

Now, if H admits a factorization (H1, . . . , Hm) and there is i ∈ [m] such that Hi

contains C4 as a subgraph, then H satisfies the assumptions of Conjecture 3Conjecture 3. Moreover,

the smallest core that is square-free but have girth smaller than 5 is K3; recall that it

is known that 3-Coloring in S1,1,1-free graphs is NP-complete and cannot be solved in

subexponential time unless the ETH fails [7070,8686]. This motivates the following conjecture.

Conjecture 4. Let H be a non-trivial graph with factorization (H1, . . . , Hm). If there

exists i ∈ [m] such that Hi has girth at most 4, then there exists t ∈ N such that the

Hom(H) problem is NP-complete cannot be solved in time 2o(n) in n-vertex St,t,t-free

graphs, unless the ETH fails.

196

Chapter 8

Related results

In the last chapter we briefly survey the other results that are related to the graph homo-

morphism problem and co-authored by the author of the dissertation. Two of these [5656,9090]

were already discussed in Chapter 7Chapter 7, here we focus on the remaining works.

Other graph classes. Another natural family of hereditary graph classes that one can

investigate to find subexponential-time algorithms for various graph problems is formed

by geometric intersection graphs [88, 2727, 4444]. These include in particular interval graphs,

circular-arc graphs (already considered in Chapter 5Chapter 5), disk graphs or string graphs.

In [9898], we show a dichotomy for a more general weighted homomorphism problem

WHom(H) (considered also in [5656]) for string graphs, i.e., the intersection graphs of

continuous curves in the plane. The dichotomy states that (i) the WHom(H) problem in

string graphs can be solved in subexponential time if H does not have two vertices with

two common neighbors, and (ii) that the problem is NP-complete and cannot be solved

in subexponential time, assuming the ETH, otherwise. Recall that the algorithmic part

of the theorem coincides with our result from [5656], that if H does not have two vertices

with two common neighbors, WHom(H) can be solved in subexponential time in Pt-free

graphs for all t ∈ N. In [9898] we also complete the dichotomy for Pt-free graphs, showing

the lower bounds for the remaining cases of H.

In [8181] we focus on the LHom(H) problem, and investigate in which classes of geo-

metric intersection graphs it can be solved in subexponential time. We provide a series of

results—both, algorithmic and lower bounds—for various intersection classes of so called

fat objects. It turns out that the property of the graph H that seems to allow the ex-

istence of faster algorithms in these classes is the size of a maximum reflexive clique

197

in H. In particular, if the target graph H is irreflexive, the subexponential algorithms

solving the homomorphism problem exist for all classes of graphs we consider (and thus

Hom(H) can be always solved in subexponential time in these classes). We also study

further the class of string graphs. It turns out that for LHom(H) the complexity of the

problem in string graphs also coincides with its complexity in Pt-free graphs (namely,

Theorem 1.3.4Theorem 1.3.4). Indeed, we show that if H is non-predacious, then LHom(H) can be

solved in time 2O(n2/3 log n) in n-vertex string graphs, and otherwise, there is no subexpo-

nential algorithm for LHom(H) in string graphs, assuming the ETH.

Other types of restrictions. As already discussed in the introduction, the major

challenge with studying the Hom(H) and LHom(H) problems is the rich structure of

target graphs that is difficult to capture by combinatorial tools. Thus, another popular

line of research is focusing on particular families of target graphs, like odd cycles [1616, 7979]

or Kneser graphs [116116]. This way we can exploit the symmetric structure of the target.

In [2828] we investigate the (L)Hom(H) problem in F -free graphs for targets H that are

k-wheels Wk, i.e., targets obtained from a k-cycle by adding a universal vertex. Among

other results, we discover an interesting non-monotonicity of the Hom(H) problem in

restricted graph classes. Indeed, we show that Hom(W5) is polynomial-time solvable in

K1,3-free graphs. On the other hand note, W5 has K3 as a subgraph, and Hom(K3) in

K1,3-free graphs is NP-comlete and cannot be solved in time 2o(n). This kind of behavior

does not occur if we consider the Hom(H) problem in general graphs: if H ′ contains H

as a subgraph, and Hom(H) is NP-complete, so is Hom(H ′). This also cannot happen in

the list variant, even if we restrict the class of instances, as each instance of LHom(H) is

also an instance of LHom(H ′).

Other ways of measuring complexity. While analyzing the running time of the

algorithms is one of the most prominent ways to study the complexity of particular prob-

lems, it is not the only one we can investigate. In [1515] we show that the tools that we

developed to study the complexity of LHom(H) problem—in this particular case some

of the gadgets that we used for the lower bounds in Chapter 6Chapter 6—can be also applied to

study the sparsification algorithms for LHom(H). It turns out that there is no non-bi-

arc graph H such that every n-vertex instance of LHom(H) can be in polynomial time

reduced to an equivalent instance of bitsize O(n2−ε) for some ε > 0 unless an unlikely

complexity-theoretic collapse occurs.

198

Appendix: Variants of satisfiability

problems

A formula (X, C) consists of a set X = {x1, . . . , xn} of variables, and a set C of clauses,

where each clause contains literals of X, i.e., variables and their negations (called, respec-

tively, positive and negative literals). A truth assignment for X is a function γ : X →

{0, 1}. A truth assignment γ satisfies a positive (resp. negative) literal z if γ(z) = 1

(resp. γ(z) = 0). Below we define the Sat problems that are considered in the thesis.

k-Sat, k ⩾ 3
Input: A formula (X, C) where each clause has at most k elements.
Question: Does there exist a truth assignment for X that satisfies at least one literal
in each clause?

Pos-1-in-3-Sat
Input: A pair (X, C) where each clause contains precisely 3 positive literals
Question: Does there exist a truth assignment for X that satisfies exactly one literal
in each clause?

The first one is a classic NP-complete problem [4949], and the subjects of, respectively,

the SETH and the ETH. The 3-Sat and Pos-1-in-3-Sat problems are used as the

starting points of our reductions. The following theorem can be found e.g. in [2929].

Theorem 8.0.1 ([2929], Theorem 24). The 1-in-3-Sat problem in NP-complete, and it

cannot be solved in time 2o(n+m), where n and m are, resp., the number of variables and

clauses of an instance, unless the ETH fails.

199

Bibliography

[1] Kenneth .I Appel and Wolfgang Haken. Every planar map is four colorable, vol-

ume 98. American Mathematical Soc., 1989.

[2] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding

embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284, April

1987.

[3] Michael Atiyah. Introduction to commutative algebra. CRC Press, 2018.

[4] Philippe Baptiste, Philippe Laborie, Claude Le Pape, and Wim Nuijten. Constraint-

based scheduling and planning. In Francesca Rossi, Peter van Beek, and Toby Walsh,

editors, Handbook of Constraint Programming, volume 2 of Foundations of Artificial

Intelligence, pages 761–799. Elsevier, 2006.

[5] John Lane Bell and Alan B. Slomson. Models and ultraproducts: An introduction.

Courier Corporation, 2006.

[6] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier

meets Möbius: fast subset convolution. In David S. Johnson and Uriel Feige, editors,

Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San

Diego, California, USA, June 11-13, 2007, pages 67–74. ACM, 2007.

[7] Hans L. Bodlaender. Dynamic programming on graphs with bounded treewidth.

In Timo Lepistö and Arto Salomaa, editors, Automata, Languages and Program-

ming, 15th International Colloquium, ICALP88, Tampere, Finland, July 11-15,

1988, Proceedings, volume 317 of Lecture Notes in Computer Science, pages 105–

118. Springer, 1988.

200

[8] Marthe Bonamy, Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Panos Gi-

annopoulos, Eun Jung Kim, Paweł Rzążewski, Florian Sikora, and Stéphan

Thomassé. EPTAS and subexponential algorithm for maximum clique on disk and

unit ball graphs. J. ACM, 68(2):9:1–9:38, 2021.

[9] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Wa-

trigant. Twin-width III: Max Independent Set, Min Dominating Set, and Coloring.

In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International

Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16,

2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 35:1–

35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[10] Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya Stein, and

Mingxian Zhong. Three-coloring and list three-coloring of graphs without induced

paths on seven vertices. Comb., 38(4):779–801, 2018.

[11] Graham R. Brightwell and Peter Winkler. Graph homomorphisms and phase tran-

sitions. J. Comb. Theory, Ser. B, 77(2):221–262, 1999.

[12] Andrei A. Bulatov. Tractable conservative constraint satisfaction problems. In 18th

IEEE Symposium on Logic in Computer Science (LICS 2003), 22-25 June 2003,

Ottawa, Canada, Proceedings, page 321. IEEE Computer Society, 2003.

[13] Andrei A. Bulatov. H-coloring dichotomy revisited. Theor. Comput. Sci., 349(1):31–

39, 2005.

[14] Andrei A. Bulatov. A short story of the CSP dichotomy conjecture. In 34th Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,

Canada, June 24-27, 2019, page 1. IEEE, 2019.

[15] Hubie Chen, Bart M. P. Jansen, Karolina Okrasa, Astrid Pieterse, and Paweł

Rzążewski. Sparsification lower bounds for list h-coloring. In Yixin Cao, Siu-Wing

Cheng, and Minming Li, editors, 31st International Symposium on Algorithms and

Computation, ISAAC 2020, December 14-18, 2020, Hong Kong, China (Virtual

Conference), volume 181 of LIPIcs, pages 58:1–58:17. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2020.

201

[16] Maria Chudnovsky, Shenwei Huang, Paweł Rzążewski, Sophie Spirkl, and Mingxian

Zhong. Complexity of ck-coloring in hereditary classes of graphs. Inf. Comput.,

292:105015, 2023.

[17] Maria Chudnovsky, Marcin Pilipczuk, Michał Pilipczuk, and Stéphan Thomassé.

Quasi-polynomial time approximation schemes for the maximum weight indepen-

dent set problem in h-free graphs. CoRR, abs/1907.04585, 2019.

[18] Maria Chudnovsky, Marcin Pilipczuk, Michał Pilipczuk, and Stéphan Thomassé.

Quasi-polynomial time approximation schemes for the maximum weight indepen-

dent set problem in h-free graphs. In Shuchi Chawla, editor, Proceedings of the 2020

ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,

USA, January 5-8, 2020, pages 2260–2278. SIAM, 2020.

[19] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong

perfect graph theorem. Annals of mathematics, pages 51–229, 2006.

[20] Maria Chudnovsky and Paul D. Seymour. The three-in-a-tree problem. Comb.,

30(4):387–417, 2010.

[21] Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring pt-free

graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Dis-

crete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019,

pages 1239–1256. SIAM, 2019.

[22] Paul Moritz Cohn. Basic algebra: groups, rings and fields. Springer Science &

Business Media, 2012.

[23] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of

finite graphs. Inf. Comput., 85(1):12–75, 1990.

[24] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable op-

timization problems on graphs of bounded clique-width. Theory Comput. Syst.,

33(2):125–150, 2000.

[25] Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan

Mihajlin, Jakub Pachocki, and Arkadiusz Socala. Tight lower bounds on graph

embedding problems. J. ACM, 64(3):18:1–18:22, 2017.

202

[26] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms.

Springer, 2015.

[27] Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C.

van der Zanden. A framework for exponential-time-hypothesis-tight algorithms and

lower bounds in geometric intersection graphs. SIAM J. Comput., 49(6):1291–1331,

2020.

[28] Michał Dębski, Zbigniew Lonc, Karolina Okrasa, Marta Piecyk, and Paweł

Rzążewski. Computing homomorphisms in hereditary graph classes: The peculiar

case of the 5-wheel and graphs with no long claws. In Sang Won Bae and Hee-

jin Park, editors, 33rd International Symposium on Algorithms and Computation,

ISAAC 2022, December 19-21, 2022, Seoul, Korea, volume 248 of LIPIcs, pages

14:1–14:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[29] Michał Dębski, Zbigniew Lonc, Karolina Okrasa, Marta Piecyk, and Paweł

Rzążewski. Computing homomorphisms in hereditary graph classes: the peculiar

case of the 5-wheel and graphs with no long claws. CoRR, abs/2205.13270, 2022.

[30] Keith Edwards. The complexity of colouring problems on dense graphs. Theor.

Comput. Sci., 43:337–343, 1986.

[31] László Egri, Dániel Marx, and Paweł Rzążewski. Finding list homomorphisms from

bounded-treewidth graphs to reflexive graphs: a complete complexity characteriza-

tion. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theo-

retical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018,

Caen, France, volume 96 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2018.

[32] Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely colourable

graphs and the hardness of colouring graphs of large girth. Comb. Probab. Comput.,

7(4):375–386, 1998.

[33] Herbert B. Enderton. A mathematical introduction to logic. Elsevier, 2001.

203

[34] Paul Erdős, Arthur L. Rubin, and Herbert Taylor. Choosability in graphs. Congr.

Numer, 26(4):125–157, 1979.

[35] Wolfgang Espelage, Frank Gurski, and Egon Wanke. How to solve NP-hard graph

problems on clique-width bounded graphs in polynomial time. In Andreas Brand-

städt and Van Bang Le, editors, Graph-Theoretic Concepts in Computer Science,

27th International Workshop, WG 2001, Boltenhagen, Germany, June 14-16, 2001,

Proceedings, volume 2204 of Lecture Notes in Computer Science, pages 117–128.

Springer, 2001.

[36] Tomás Feder and Pavol Hell. Edge list homomorphisms.

http://theory.stanford.edu/~tomas/edgelist.pshttp://theory.stanford.edu/~tomas/edgelist.ps.

[37] Tomás Feder and Pavol Hell. List homomorphisms to reflexive graphs. Journal of

Combinatorial Theory, Series B, 72(2):236 – 250, 1998.

[38] Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc

graphs. Combinatorica, 19(4):487–505, 1999.

[39] Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list

homomorphisms. Journal of Graph Theory, 42(1):61–80, 2003.

[40] Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms of graphs with

bounded degrees. Discrete Mathematics, 307(3-5):386–392, 2007.

[41] Tomás Feder, Pavol Hell, and Bojan Mohar. Acyclic homomorphisms and circular

colorings of digraphs. SIAM J. Discret. Math., 17(1):161–169, 2003.

[42] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone

monadic SNP and constraint satisfaction: A study through datalog and group the-

ory. SIAM J. Comput., 28(1):57–104, 1998.

[43] Fedor V. Fomin, Pinar Heggernes, and Dieter Kratsch. Exact algorithms for graph

homomorphisms. Theory Comput. Syst., 41(2):381–393, 2007.

[44] Jacob Fox and János Pach. Computing the independence number of intersection

graphs. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California,

USA, January 23-25, 2011, pages 1161–1165. SIAM, 2011.

204

http://theory.stanford.edu/~tomas/edgelist.ps

[45] Michael Freedman, László Lovász, and Alexander Schrijver. Reflection positivity,

rank connectivity, and homomorphism of graphs. Journal of the American Mathe-

matical Society, 20(1):37–51, 2007.

[46] Anna Galluccio, Pavol Hell, and Jaroslav Nešetřil. The complexity of H -colouring

of bounded degree graphs. Discret. Math., 222(1-3):101–109, 2000.

[47] Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill

Simonov. The fine-grained complexity of graph homomorphism parameterized by

clique-width. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,

editors, 49th International Colloquium on Automata, Languages, and Programming,

ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 66:1–66:20.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[48] Robert Ganian, Eun Jung Kim, and Stefan Szeider. Algorithmic applications of

tree-cut width. SIAM J. Discret. Math., 36(4):2635–2666, 2022.

[49] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,

1979.

[50] Michael R. Garey, David S. Johnson, G. L. Miller, and Christos H. Papadimitriou.

The complexity of coloring circular arcs and chords. SIAM J. Algebraic Discret.

Methods, 1(2):216–227, 1980.

[51] Peter Gartland and Daniel Lokshtanov. Independent set on pk-free graphs in quasi-

polynomial time. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foun-

dations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19,

2020, pages 613–624. IEEE, 2020.

[52] Peter Gartland, Daniel Lokshtanov, Tomás Masarík, Marcin Pilipczuk, Michał

Pilipczuk, and Paweł Rzążewski. Maximum weight independent set in graphs with

no long claws in quasi-polynomial time. CoRR, abs/2305.15738, 2023.

[53] Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A survey

on the computational complexity of coloring graphs with forbidden subgraphs. J.

Graph Theory, 84(4):331–363, 2017.

205

[54] Petr A. Golovach, Daniël Paulusma, and Jian Song. Closing complexity gaps for

coloring problems on h-free graphs. Inf. Comput., 237:204–214, 2014.

[55] Albert Gräf, Martin Stumpf, and Gerhard Weißenfels. On coloring unit disk graphs.

Algorithmica, 20(3):277–293, 1998.

[56] Carla Groenland, Karolina Okrasa, Paweł Rzążewski, Alex D. Scott, Paul D. Sey-

mour, and Sophie Spirkl. h-colouring pt-free graphs in subexponential time. Discret.

Appl. Math., 267:184–189, 2019.

[57] Martin Grötschel, László Lovász, and Alexander Schrijver. Polynomial algorithms

for perfect graphs. In North-Holland mathematics studies, volume 88, pages 325–

356. Elsevier, 1984.

[58] Gregory Z. Gutin, Pavol Hell, Arash Rafiey, and Anders Yeo. A dichotomy for

minimum cost graph homomorphisms. Eur. J. Comb., 29(4):900–911, 2008.

[59] András Gyárfás. Problems from the world surrounding perfect graphs. Number 177.

MTA Számítástechnikai és Automatizálási Kutató Intézet, 1985.

[60] Hugo Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Natur-

forsch. Ges. Zürich, 88(2):133–142, 1943.

[61] Rudolf Halin. S-functions for graphs. Journal of geometry, 8:171–186, 1976.

[62] Richard Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of product graphs.

Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton,

FL, second edition, 2011. With a foreword by Peter Winkler.

[63] Richard H. Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of product

graphs. CRC press, 2011.

[64] Pavol Hell and Jing Huang. Two remarks on circular arc graphs. Graphs Comb.,

13(1):65–72, 1997.

[65] Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discrete Mathematics, 109(1-

3):117–126, 1992.

206

[66] Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms. Oxford University

Press, 2004.

[67] Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory,

Ser. B, 48(1):92–110, 1990.

[68] Pavol Hell and Jaroslav Nešetřil. Colouring, constraint satisfaction, and complexity.

Comput. Sci. Rev., 2(3):143–163, 2008.

[69] Chính T. Hoàng, Marcin Kamínski, Vadim V. Lozin, Joe Sawada, and Xiao Shu.

Deciding k-colorability of p5-free graphs in polynomial time. Algorithmica, 57(1):74–

81, 2010.

[70] Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–

720, 1981.

[71] Shenwei Huang. Improved complexity results on k-coloring pt-free graphs. Eur. J.

Comb., 51:336–346, 2016.

[72] John F. Humphreys. A course in group theory, volume 6. Oxford University Press,

USA, 1996.

[73] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J.

Comput. Syst. Sci., 62(2):367–375, 2001.

[74] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have

strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[75] Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using

graph decompositions via matrix rank. In Yossi Azar, Hannah Bast, and Grzegorz

Herman, editors, 26th Annual European Symposium on Algorithms, ESA 2018, Au-

gust 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages 47:1–47:15. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[76] Peter Jeavons. On the algebraic structure of combinatorial problems. Theor. Com-

put. Sci., 200(1-2):185–204, 1998.

[77] Peter Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of con-

straints. J. ACM, 44(4):527–548, 1997.

207

[78] Tommy R. Jensen and Bjarne Toft. Graph coloring problems. John Wiley & Sons,

2011.

[79] Marcin Kamiński and Anna Pstrucha. Certifying coloring algorithms for graphs

without long induced paths. Discret. Appl. Math., 261:258–267, 2019.

[80] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.

Miller and James W. Thatcher, editors, Proceedings of a symposium on the Com-

plexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J.

Watson Research Center, Yorktown Heights, New York, USA, The IBM Research

Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[81] Sándor Kisfaludi-Bak, Karolina Okrasa, and Paweł Rzążewski. Computing list ho-

momorphisms in geometric intersection graphs. In Michael A. Bekos and Michael

Kaufmann, editors, Graph-Theoretic Concepts in Computer Science - 48th Inter-

national Workshop, WG 2022, Tübingen, Germany, June 22-24, 2022, Revised Se-

lected Papers, volume 13453 of Lecture Notes in Computer Science, pages 313–327.

Springer, 2022.

[82] Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret.

Math., 34(3):1538–1558, 2020.

[83] Benoit Larose. Families of strongly projective graphs. Discussiones Mathematicae

Graph Theory, 22:271–292, 2002.

[84] Benoit Larose. Strongly projective graphs. Canadian Journal of Mathematics,

54(4):757–768, 2002.

[85] Benoit Larose and Claude Tardif. Strongly rigid graphs and projectivity. Multiple-

Valued Logic, 7:339–361, 2001.

[86] Daniel Leven and Zvi Galil. NP completeness of finding the chromatic index of

regular graphs. J. Algorithms, 4(1):35–44, 1983.

[87] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs

of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–

13:30, 2018.

208

[88] Tomasz Łuczak and Jaroslav Nešetřil. Note on projective graphs. J. Graph Theory,

47(2):81–86, 2004.

[89] Frédéric Maffray and Grégory Morel. On 3-colorable p5-free graphs. SIAM J.

Discret. Math., 26(4):1682–1708, 2012.

[90] Konrad Majewski, Tomás Masarík, Jana Novotná, Karolina Okrasa, Marcin

Pilipczuk, Paweł Rzążewski, and Marek Sokołowski. Max weight independent set

in graphs with no long claws: An analog of the Gyárfás’ path argument. In Mikołaj

Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International

Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8,

2022, Paris, France, volume 229 of LIPIcs, pages 93:1–93:19. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2022.

[91] Kim Marriott and Peter J. Stuckey. Programming with constraints: an introduction.

MIT press, 1998.

[92] Ross M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica,

37(2):93–147, 2003.

[93] Ralph McKenzie. Cardinal multiplication of structures with a reflexive relation.

Fundamenta Mathematicae, 70(1):59–101, 1971.

[94] George B. Mertzios and Paul G. Spirakis. Algorithms and almost tight results for

3-colorability of small diameter graphs. CoRR, abs/1202.4665, 2012.

[95] Jaroslav Nešetřil, Mark H. Siggers, and László Zádori. A combinatorial constraint

satisfaction problem dichotomy classification conjecture. Eur. J. Comb., 31(1):280–

296, 2010.

[96] Jaroslav Nešetřil and Xuding Zhu. On sparse graphs with given colorings and

homomorphisms. J. Comb. Theory, Ser. B, 90(1):161–172, 2004.

[97] Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classifica-

tion of the list homomorphism problem for bounded-treewidth graphs. In Fabrizio

Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European

Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual

209

Conference), volume 173 of LIPIcs, pages 74:1–74:24. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2020.

[98] Karolina Okrasa and Paweł Rzążewski. Subexponential algorithms for variants of

the homomorphism problem in string graphs. J. Comput. Syst. Sci., 109:126–144,

2020.

[99] Karolina Okrasa and Paweł Rzążewski. Complexity of the list homomorphism prob-

lem in hereditary graph classes. In Markus Bläser and Benjamin Monmege, editors,

38th International Symposium on Theoretical Aspects of Computer Science, STACS

2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187

of LIPIcs, pages 54:1–54:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2021.

[100] Karolina Okrasa and Paweł Rzążewski. Fine-grained complexity of the graph homo-

morphism problem for bounded-treewidth graphs. SIAM J. Comput., 50(2):487–508,

2021.

[101] Marta Piecyk and Paweł Rzążewski. Fine-grained complexity of the list homomor-

phism problem: feedback vertex set and cutwidth. CoRR, abs/2009.11642, 2020.

[102] Marta Piecyk and Paweł Rzążewski. Fine-grained complexity of the list homomor-

phism problem: Feedback vertex set and cutwidth. In Markus Bläser and Benjamin

Monmege, editors, 38th International Symposium on Theoretical Aspects of Com-

puter Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual

Conference), volume 187 of LIPIcs, pages 56:1–56:17. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2021.

[103] Marcin Pilipczuk, Michał Pilipczuk, and Paweł Rzążewski. Quasi-polynomial-time

algorithm for independent set in pt-free graphs via shrinking the space of induced

paths. In 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Confer-

ence, January 11-12, 2021, pages 204–209. SIAM, 2021.

[104] Bert Randerath and Ingo Schiermeyer. 3-Colorability in P for p6-free graphs. Dis-

cret. Appl. Math., 136(2-3):299–313, 2004.

210

[105] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J.

Comb. Theory, Ser. B, 36(1):49–64, 1984.

[106] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of

tree-width. J. Algorithms, 7(3):309–322, 1986.

[107] Paweł Rzążewski. Exact algorithm for graph homomorphism and locally injective

graph homomorphism. Inf. Process. Lett., 114(7):387–391, 2014.

[108] Thomas J. Schaefer. The complexity of satisfiability problems. In Richard J. Lipton,

Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho,

editors, Proceedings of the 10th Annual ACM Symposium on Theory of Computing,

May 1-3, 1978, San Diego, California, USA, pages 216–226. ACM, 1978.

[109] Mark H. Siggers. Dichotomy for bounded degree h-colouring. Discret. Appl. Math.,

157(2):201–210, 2009.

[110] Mark H. Siggers. A new proof of the h-coloring dichotomy. SIAM J. Discret. Math.,

23(4):2204–2210, 2010.

[111] Alexander Soifer. The mathematical coloring book: Mathematics of coloring and the

colorful life of its creators. Springer, 2009.

[112] Jeremy P. Spinrad. Circular-arc graphs with clique cover number two. J. Comb.

Theory, Ser. B, 44(3):300–306, 1988.

[113] Vadim G. Vizing. Vertex coloring with given colors, diskret. analiz. 29 (1976) 3–10.

Discrete Anal. (in Russian), 29:3–10, 1976.

[114] Magnus Wahlström. New plain-exponential time classes for graph homomorphism.

Theory Comput. Syst., 49(2):273–282, 2011.

[115] Paul M. Weichsel. The Kronecker product of graphs. Proceedings of the American

mathematical society, 13(1):47–52, 1962.

[116] Xuding Zhu. Recent developments in circular colouring of graphs. Topics in Discrete

Mathematics: Dedicated to Jarik Nešetřil on the Occasion of his 60th Birthday,

pages 497–550, 2006.

211

	Introduction
	A generalization of graph colorings
	Computing homomorphisms: state of the art
	Homomorphisms meet treewidth
	Excluding induced subgraphs

	Overview of the results
	Organization of the thesis

	Preliminaries
	Graph notations
	Graph parameters

	Graph homomorphisms: toolbox
	Basic concepts
	Projectivity
	Constructible sets

	Signature sets

	The homomorphism problem parameterized by clique-width
	The algorithm
	Consequences of thm:cliquewidth-algo

	Lower bounds

	List homomorphisms: toolbox
	Bi-arc graphs and their characterizations
	Decompositions
	Incomparable sets

	The list homomorphism problem parameterized by treewidth
	Decomposition lemmas
	The algorithm
	Building list gadgets
	Lower bounds

	Complexity of the homomorphism problems in F-free classes
	Pt-free graphs
	The algorithm
	Lower bounds

	St,t,t-free graphs
	Consistent instances
	Known tools and notions
	Safe graphs and neutral functions
	The algorithm
	Lower bounds and generalizations

	Possible extensions of the results

	Related results
	Appendix: Variants of satisfiability problems

